We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

Terrestrial biosphere carbon storage under alternative climate projections

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from −106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthor, J. S.: 1995, ‘Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle’, Global Change Biology 1, 243–274.

    Article  Google Scholar 

  • Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: 2004, ‘The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrase and forest dieback under global climate warming’, Theor. Appl. Climatol. 78, 157–175.

    Article  Google Scholar 

  • Bopp, L.; Le Quéré, C., Heimann, M., Manning, A. C. and Monfray, P.: 2002, ‘Climate-induced oceanic Oxygen fluxes: implications for the contemporary carbon budget’, Global Biogeochemical Cycles 16(2), 1022, doi: 10.1029/2001GB001445.

  • Bopp, L.; Le Quéré, C., Heimann, M., Manning, A. C. and Monfray, P.: 2002, ‘Climate-induced oceanic Oxygen fluxes: implications for the contemporary carbon budget’, Global Biogeochemical Cycles 16(2), 1022, doi: 10.1029/2001GB001445.

  • Cao, M. K. and Woodward, F. I.: 1998, ‘Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their response to climatic change’, Global Change Biology 4, 185-198.

    Article  Google Scholar 

  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: 2000, ‘Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model’, Nature 408, 184–187.

    Article  Google Scholar 

  • Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: 2004, ‘Amazonian forest dieback under climate-carbon cycle procetions for the 21st century’, Theor. Appl. Climatol. 78, 137–156.

    Article  Google Scholar 

  • Collatz, G., Ribas-Carbo, M., and Berry, J.: 1992, ‘Coupled photosynthesis-stomatal conductance model for leaves of C4 plants’, Australian Journal of Plant Physiology 19, 519–538.

    Article  Google Scholar 

  • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: 2001, ‘Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models’, Global Change Biology 7, 357–373.

    Article  Google Scholar 

  • Cramer, W., Kicklighter, D. W., Bondeau, A., Moore III, B., Churkina, G., Nemry, B., Ruimy, A., Schloss, A. L., and participants of the Potsdam NPP model intercomparison: 1999, ‘Comparing global models of terrestrial net primary productivity (NPP): Overview and key results’, Global Change Biology 5(Suppl 1), 1–15.

  • DeLucia, E. H., Hamilton, J. G., Naidu, S. L., Thomas, R. B., Andrews, J. A., Finzi, A., Lavine, M., Matamala, R., Mohan, J. E., Hendrey, G. R., and Schlesinger, W. H.: 1999, ‘Net primary production of a forest ecosystem with experimental CO2 enrichment’, Science 284, 1177–1179.

    Article  Google Scholar 

  • Dufresne, J. L., Friedlingstein, P., Berthelot, M., Bopp, L., Ciais, P., Fairhead, L., Treut, Le H., and Monfray, P.: 2002, ‘On the magnitude of positive feedback between future climate change and the carbon cycle’, Geophysical Research Letters 29(10), 1405, 10.1029/2001GL013777.

    Article  Google Scholar 

  • Emori, S., Nozawa, T., Abe-Ouchi, A., Numaguti, A., and Kimoto, M.: 1999, ‘Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulphate aerosol scattering’, Journal of the Meteorological Society of Japan 77, 1299–1307.

    Google Scholar 

  • Fang, C., Smith, P. Moncrieff, J. B., and Smith, J. U.: 2005, ‘Similar response of labile and resistant soil organic matter pools to changes in temperature’, Nature 433, 57–59.

    Article  Google Scholar 

  • Farquhar, G. D., Caemmerer, S. v., and Berry, J. A.: 1980, ‘A biochemical model of Photosynthetic CO2 Assimilation in leaves of C3 Species’, Planta 149(2), 78–90.

    Article  Google Scholar 

  • Field, C., Jackson, R., and Mooney, H.: 1995, ‘Stomatal responses to increased CO2: Implications from the plant to the global scale’, Plant, Cell and Environment 18, 1214–1255.

    Article  Google Scholar 

  • Flato, G. M. and Boer, G. J.: 2001, ‘Warming asymmetry in climate change simulations’, Geophysical Research Letters 28, 195–198.

    Article  Google Scholar 

  • Foley, J. A.: 1995, ‘An equilibrium model of the terrestrial carbon budget’, Tellus 47B, 310–319.

    Google Scholar 

  • Friedlingstein, P., Bopp, l., Ciais, p., Dufresne, J., Fairhead, L., LeTreut, H., Monfray, P., and Orr, J.: 2001, ‘Positive feedback between future climate change and the carbon cycle’, Geophysical Research Letters 28(8), 1543–1546.

    Article  Google Scholar 

  • Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner, P.: 2003, ‘How positive is the feedback between climate change and the carbon cycle?’, Tellus 55B, 692–700.

    Google Scholar 

  • Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: 2004, ‘Terrestrial vegetation and water balance: Hydrological evaluation of a dynamic global vegetation model’, Journal of Hydrology 286, 249–270.

    Article  Google Scholar 

  • Gordon, C., Cooper, C., Senior, C. A., Banks, H. T., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: 2000, ‘The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments’, Climate Dynamics 16, 147–168.

    Article  Google Scholar 

  • Guo, L. B. and Gifford, R. M.: 2002, ‘Soil carbon stocks and land use change: A meta analysis’, Global Change Biology 8, 345–360.

    Article  Google Scholar 

  • Haxeltine, A. and Prentice, I. C.: 1996a, ‘A general model for the light-use efficiency of primary production’, Functional Ecology 10, 551–561.

    Article  Google Scholar 

  • Haxeltine, A. and Prentice, I. C.: 1996b, ‘BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types’, Global Biogeochemical Cycles 10, 693–709.

    Article  Google Scholar 

  • Hetherington, A. M. and Woodward, F. I.: 2003, ‘The role of stomata in sensing and driving environmental change’, Nature 424, 901–908.

    Article  Google Scholar 

  • Hirst, A. C., Gordon, H. B., and O'Farrell, S. P.: 1996, ‘Global warming in a coupled climate model including oceanic eddy-induced advection’, Geophysical Research Letters 23, 3361–3364.

    Article  Google Scholar 

  • Hobbie, S. E., Schimel, J. P., Trumbore, S. E., Randerson, J. R.: 2000, Controls over carbon storage and turnover in high-latitude soils. Global Change Biology 6(Suppl 1), 196–210.

    Article  Google Scholar 

  • Houghton, J. T., Callander, B. A., and Varney, S. K. (eds): 1992, The Supplementary Report to the IPCC Scientific Assessment, Climate Change 1992 Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • House, J. I., Prentice, I. C., and Le Quérè, C.: 2002, ‘Maximum impacts of future reforestation or deforestation on atmospheric CO2’, Global Change Biology 8, 1047–1052.

    Article  Google Scholar 

  • House, J. I., Prentice, I. C., Ramankutty, N., Houghton, R. A., and Heimann, M.: 2003, ‘Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks’, Tellus 55B, 345-363.

    Google Scholar 

  • Hungate, B. A., Dukes, J. S., Shaw, R., Luo, Y., and Field, C. B.: 2003, ‘Nitrogen and Climate Change’, Nature 302, 1512–1513.

    Google Scholar 

  • The Intergovernmental Panel on Climate Change (IPCC): 2001, in Climate Change 2001: The Scientific Basis, Contribution of the Working Group I to the Third Assessment Report, Cambridge University Press, UK.

  • Jones, C. D., Cox, P. M., Essery, R. L. H., Roberts, D. L., and Woodage, M. J.: 2003, ‘Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols’, Geophysical Research Letters 30(9), 1479, doi:10.1029/2003GL016867.

    Article  Google Scholar 

  • Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., Gerber, S., and Hasselmann, K.: 2001, ‘Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios’, Global Biogeochemical Cycles 15, 891-907.

    Article  Google Scholar 

  • Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.: 2005, ‘Long-term sensitivity of soil carbon turnover to warming’, Nature 433, 298–301.

    Article  Google Scholar 

  • Lloyd, J. and Taylor, J. A.: 1994, ‘On the temperature dependence of soil respiration’, Functional ecology 8, 315–323

    Article  Google Scholar 

  • Lucht, W., Prentice, I. C., Myneni, R. B., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W., and Smith, B.: 2002, ‘Climatic control of the high-latitude vegetation greening trend and Pinatubo effect’, Science 296, 1687–1689.

    Article  Google Scholar 

  • McGuire, A. D., Clein, J. S., Melillo, J. M., Kicklighter, D. W., Meier, R. A., Vorosmarty, C. J., and Serreze, M. C.: 2000, ‘Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate’, Global Change Biology 6, 141–159.

    Article  Google Scholar 

  • McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: 2001, ‘Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models’, Global Biogeochemical Cycles 15, 183–206.

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: 1997, ‘Increased plant growth in the northern high latitudes from 1981–1991’, Nature 386, 698–702.

    Article  Google Scholar 

  • Nakicenovic, N. and Swart, R. (eds.): 2000, Special Report on Emissions Scenarios, Cambridge University Press.

  • Neilson, R. P.: 1995, ‘A model for predicting continental-scale vegetation distribution and water balance’, Ecological Applications 5, 362–386.

    Article  Google Scholar 

  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: 2003, ‘Climate-driven increases in global terrestrial net primary production from 1982 to 1999’, Science 300, 1560–1563

    Article  Google Scholar 

  • New, M. G., Hulme, M., and Jones, P. D.: 2000, ‘Representing twentieth-century space-time climate variability, Part II, Development of 1901–1996 monthly grids of terrestrial surface climate’, Journal of Climate 13, 2217–2238.

    Article  Google Scholar 

  • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., and Wallace, D. W. R. L.: 2001, ‘The carbon cycle and atmospheric carbon dioxide’, in J. T. Houghton et al. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, New York, pp. 185–237.

    Google Scholar 

  • Prentice, I. C., Heimann, M., and Sitch, S.: 2000, ‘The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations’, Ecological Applications 10, 1553–1573.

    Article  Google Scholar 

  • Plattner, G-K., Joos, F., and Stocker, T. F.: 2002, ‘Revision of the global carbon budget due to changing air-sea oxygen fluxes’, Global Biogeochemical Cycles 16(4), 1096, doi:10.1029/2001GB001746.

    Article  Google Scholar 

  • Roeckner, E., Oberhuber, J. M., Bacher, A, Christoph, M., and Kirchner, I.: 1996, ‘ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM’, Climate Dynamics 12, 737–754.

    Article  Google Scholar 

  • Ryan, M. G.: 1991, ‘Sapwood Volume for three subalbine conifers: predictive equations and ecological implications’, Canadian Journal of Forest Research, 19, 1397–1401.

    Article  Google Scholar 

  • Ryan, M. G.: 1991, ‘SapwoodVolume for three subalbine conifers: Predictive equations and ecological implications’, Canadian Journal of Forest Research 19, 1397–1401.

    Article  Google Scholar 

  • Schultz, J.: 2000, Handbuch der Ökozonen, Ulmer, Stuttgart.

  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: 2003, ‘Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model’, Global Change Biology 9, 161–185.

    Article  Google Scholar 

  • Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., and Rey, A.: 2003, ‘Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes’, European Journal of Soil Science 54, 779–791.

    Article  Google Scholar 

  • Sprugel, D. G., Ryan, M. G., and Renee Brooks, J.: 1995, ‘Respiration from the organ level to the stand’, Resource Physiology of Conifers, Academic Press, San Diego, California, pp. 255–300.

    Google Scholar 

  • Stieglitz, M., Giblin, A., Hobbie, J., Williams, M. and Kling, G.: 2000, ‘Simulating the effects of climate change and climate variability on carbon dynamics in Arctic tundra’, Global Biogeochemical Cycles 14(4), 1123–1136.

    Article  Google Scholar 

  • Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: 2001, ‘The role of fire disturbance for global vegetation dynamics: Coupling fire into a dynamic global vegetation model’, Global Ecology {&} Biogeography 10, 661–677

    Article  Google Scholar 

  • Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., and Rudolf, B.: 2003, ‘Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data’, Journal of Geophysical Research 108(D19), 4611, doi:10.1029/2003JD003663.

    Article  Google Scholar 

  • White, A., Cannell, M. R., and Friend, A. D.: 2000: ‘CO2 stabilization, climate change and the terrestrial carbon sink’, Global Change Biology 6, 817–833.

    Article  Google Scholar 

  • Zhou, L., Tucker, C., Kaufmann, R., Slayback, D., Shabanov, N., Fung, I., and Myneni, R.: 2001, ‘Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999’, Journal of Geophysical Research 106, 20069–20084.

    Article  Google Scholar 

  • Zobler, L.: 1986, ‘A world soil file for global climate modelling’, NASA Technical Memorandum 87802, NASA Goddard Institute for Space Studies, New York, U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibyll Schaphoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaphoff, S., Lucht, W., Gerten, D. et al. Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change 74, 97–122 (2006). https://doi.org/10.1007/s10584-005-9002-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-9002-5

Keywords

Navigation