Climatic Change

, Volume 73, Issue 3, pp 345–373 | Cite as

Future Effects of Ozone on Carbon Sequestration and Climate Change Policy Using a Global Biogeochemical Model

  • B. Felzer
  • J. Reilly
  • J. Melillo
  • D. Kicklighter
  • M. Sarofim
  • C. Wang
  • R. Prinn
  • Q. Zhuang


Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. The reduced carbon storage would then require further reductions in fossil fuel emissions to meet a given CO2 concentration target, thereby increasing the cost of meeting the target. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860–1995) show the largest damages occur in the Southeast and Midwestern regions of the United States, eastern Europe, and eastern China. The largest reductions in carbon storage for the period 1950–1995, 41%, occur in eastern Europe. Scenarios for the 21st century developed with the MIT Integrated Global Systems Model (IGSM) lead to even greater negative effects on carbon storage in the future. In some regions, current land carbon sinks become carbon sources, and this change leads to carbon sequestration decreases of up to 0.4 Pg C yr−1 due to damage in some regional ozone hot spots. With a climate policy, failing to consider the effects of ozone damage on carbon sequestration would raise the global costs over the next century of stabilizing atmospheric concentrations of CO2 equivalents at 550 ppm by 6 to 21%. Because stabilization at 550 ppm will reduce emission of other gases that cause ozone, these additional benefits are estimated to be between 5 and 25% of the cost of the climate policy. Tropospheric ozone effects on terrestrial ecosystems thus produce a surprisingly large feedback in estimating climate policy costs that, heretofore, has not been included in cost estimates.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. M., Hamilton, S. A., and McCarl, B. A.: 1986, ‘The benefits of pollution control: The case of ozone and U.S. Agriculture’, Am. J. Agric. Econ. 68, 886–893.Google Scholar
  2. Aunan, K., Berntsen, T. K., and Seip, H. M.: 2000, ‘Surface ozone in China and its possible impact on agricultural crop yield’, Ambio 29(6), 294–301.Google Scholar
  3. Babiker, M. H., Reilly, J. M., Mayer, M., Eckhaus, R. S., Wing, I. S., and Hyman, R. C.: 2001, The MIT emissions prediction and policy analysis (EPPA) model: Revisions, sensitivities, and comparisons of results, MIT Joint Program on the Science and Policy of Global Change, p. 94.Google Scholar
  4. Babiker, M. H., Metcalf, G. E., and Reilly, J.: 2002, ‘Tax distortions and global climate policy’, J. Environ. Econ. Manage. 46, 269–287.Google Scholar
  5. Babiker, M., Reilly, J., and Jacoby, H. 2000, ‘The Kyoto protocol and developing countries’, Energy Policy 28, 525–536.CrossRefGoogle Scholar
  6. Cros, B., Delmas, R., Nganga, D., Clairac, B., and Fontan, J.: 1988, ‘Seasonal trends of ozone in equatorial Africa: Experimental evidence of photochemical formation’, J. Geophys. Res. 93(D7), 8355–8366.Google Scholar
  7. de Masin, A. V.: 2003, Economic Modeling of Urban Pollution an Climate Policy Interactions, Cambridge, MA, Massachusetts Institute of Technology.Google Scholar
  8. Felzer, B. S. F., Kicklighter, D. W., Melillo, J. M., Wang, C., Zhuang, Q., and Prinn, R. G.: 2004, ‘Ozone effects on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model’, Tellus 56B, 230–248.Google Scholar
  9. Gitay, H., Brown, S., Easterling, W., Jallow, B., et~al.: 2001, Ecosystems and their goods and services, Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contributions of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. (eds.), Cambridge University Press, New York, pp. 235–342.Google Scholar
  10. Hertel, T.: 1997, Global Trade Analysis: Modeling and Applications, Cambridge University Press, Cambridge, UK.Google Scholar
  11. Hjellbrekke, A. G.: 1998, Ozone Measurements.Google Scholar
  12. Hjellbrekke, A. G. and Solberg, S.: 1999, Ozone Measurements.Google Scholar
  13. Hyman, R. C., Reilly, J. M., Babiker, M. H., De Masin, A., and Jacoby, H. D.: 2002, ‘Modeling non-CO2 greenhouse gas abatement’, Environ. Model. Assess. 8(3), 175–186.Google Scholar
  14. Jacoby, H., Eckaus, R., Ellermann, A. D., Prinn, R., Reiner, D., and Yang, Z. 1997, ‘CO2 Emissions limits: Economic adjustments and the distribution of burdens’, Energy J. 18, 31– 58.Google Scholar
  15. Jacoby, H. and Sue Wing, I.: 1999, ‘Adjustment time, capital malleability, and policy cost,’ Energy J. (Special Issue), The Costs of the Kyoto Protocol: A Multi-Model Evaluation 73– 92.Google Scholar
  16. Joos, F., Prentice, I. C., and House, J. I.: 2002, ‘Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: Consistent with U.S. forest inventory data,’ Global Change Biol. 8, 299–303.CrossRefGoogle Scholar
  17. Kamenkovich, I. V., Sokolov, A. P., and Stone, P. H.: 2002, ‘An efficient climate model with a 3D Ocean and statistical-dynamical atmosphere’, Climate Dyn. 19(7), 585–598.Google Scholar
  18. Kicklighter, D. W., Bruno, M., Dönges, S., Esser, G., Heimann, M., Helfrich, J., Ift, F., Joos, F., Kaduk, J., Kohlmaier, G. H., McGuire, A. D., Melillo, J. M., Meyer, R., Moore, B., III, Nadler, A., Prentice, I. C., Sauf, W., Schloss, A. L., Sitch, S., Wittenberg, U., and Würth, G.: 1999, ‘A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison study of four terrestrial biosphere models’, Tellus 51B, 343– 366.Google Scholar
  19. Kirchoff, V. W. J. H. and Rasmussen, R. A.: 1990, ‘Time variations of CO and O3 concentrations in a region subject to biomass burning’, J. Geophys. Res. 95(D6), 7521–7532.CrossRefGoogle Scholar
  20. Krupa, S. V. and Manning, W. J.: 1988, ‘Atmospheric ozone: Formation and effects on vegetation’, Environ. Pollut. 50, 101–137.CrossRefGoogle Scholar
  21. Lawrence, M. G., Crutzen, P. J., Rasch, P. J., Eaton, B. E., and Mahowald, N. M.: 1999, ‘A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation’, J. Geophys. Res. 104, 26245–26277.Google Scholar
  22. Logan, J. A.: 1999, ‘An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone’, J. Geophys. Res. 104(D13), 16115–16149.Google Scholar
  23. Luo, C., St. John, J. C., Xiugi, Z., Lam, K. S., Wang, T., and Chameides, W. L.: 2000, ‘A nonurban ozone air pollution episode over eastern China: Observations and model simulations’, J. Geophys. Res. 105(D2), 1889–1908.Google Scholar
  24. Mahowald, N. M., Rasch, P. J., Eaton, B. E., Whittlestone, S., and Prinn, R. G.: 1997, ‘Transport of 222radon to the remote troposphere using the model of atmospheric transport and chemistry and assimilated winds from ECMWF and the National Center for Environmental Prediction/NCAR’, J. Geophys. Res. 102, 28139–28152.Google Scholar
  25. Marenco, A., Gouget, H., Nedelec, P., and Pages, J.: 1994, ‘Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing’, J. Geophys. Res. 99(D8), 16617–16632.CrossRefGoogle Scholar
  26. Mauzerall, D. L. and Wang, X.: 2001, ‘Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States, Europe, and Asia’, Annu. Rev. Energy Enivron. 26(237–268).Google Scholar
  27. Mayer, M., Wang, C., Webster, M., and Prinn, R. G.: 2000a, ‘Linking local air pollution to global chemistry and climate’, J. Geophys. Res. 105(D18), 22869–22896.CrossRefGoogle Scholar
  28. Mayer, M., Hyman, R., Harnisch, J., and Reilly, J.: 2000b, ‘Emissions inventories and time trends for greenhouse gases and other pollutants, Technical Note No. 1, Joint Program on the Science and Policy of Global Change, (July)
  29. McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore, B., III, Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: 2001, ‘Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models’, Glob. Biogeochem. Cyc. 15(1), 183–206.Google Scholar
  30. Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., III, Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global climate change and terrestrial net primary production’, Nature 363, 234– 240.CrossRefGoogle Scholar
  31. Ollinger, S. V., Aber, J. D., and Reich, P. B.: 1997, ‘Simulating ozone effects on forest productivity: Interactions among leaf-, canopy-, and stand-level processes’, Ecol. Appl. 7(4), 1237– 1251.Google Scholar
  32. Ollinger, S. V., Aber, J. D., Reich, P. B., and Freuder, R. J.: 2002, ‘Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests’, Global Change Biol. 8, 545–562.CrossRefGoogle Scholar
  33. Oltmans, S. J. and Levy, H., II: 1994, ‘Surface ozone measurements from a global network’, Atmos. Environ. 28(1), 9–24.CrossRefGoogle Scholar
  34. Prinn, R., Jacoby, H., Sokolov, A., Wang, C., Xiao, X., Yang, Z., Eckhaus, R., Stone, P., Ellerman, D., Melillo, J. M., Fitzmaurice, J., Kicklighter, D. W., Holian, G., and Liu, Y.: 1999, ‘Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies’, Clim. Change 41, 469–546.CrossRefGoogle Scholar
  35. Rasch, P. J., Mahowald, N. M., and Eaton, B. E.: 1997, ‘Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of shortlived and soluble species’, J. Geophys. Res. 102, 28127–28138.CrossRefGoogle Scholar
  36. Reich, P. B.: 1987, ‘Quantifying plant response to ozone: A unifying theory’, Tree Physiol. 3, 63– 91.Google Scholar
  37. Reilly, J., Prinn, R., Harnisch, J., Fitzmaurice, J., Jacoby, H., Kicklighter, D. W., Melillo, J. M., Stone, P., Sokolov, A., and Wang, C.: 1999, ‘Multi-gas assessment of the Kyoto Protocol’, Nature 401, 549–555.CrossRefGoogle Scholar
  38. Schimel, D. S. et~al.: 2001, ‘Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems’, Nature 414, 169–172.CrossRefGoogle Scholar
  39. Sokolov, A. P. and Stone, P. H.: 1998, ‘A flexible climate model for use in integrated assessments’, Clim. Dyn. 14, 291–303.CrossRefGoogle Scholar
  40. SRES: 2000, Special Report on Emissions Scenarios, Nakicenovic N., and Swart R. (eds.), World Meteorological Organization.Google Scholar
  41. Tian, H., Melillo, J. M., Kicklighter, D. W., Pan, S., Liu, J., McGuire, A. D., and Moore, B., III: 2003, ‘Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle’, Global Planet. Change 37, 201–217.Google Scholar
  42. Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., and Helfrich, J. V. K., III: 1999, ‘The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States’, Tellus 51B, 414–452.Google Scholar
  43. von Kuhlmann, R., Lawrence, M., Crutzen, P., and Rasch, P.: 2003, ‘A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results’, J. Geophys. Res. 108, doi: 10.1029/2002JD002893.Google Scholar
  44. Wang, C., Prinn, R., and Sokolov, A.: 1998, ‘A global interactive chemistry and climate model: Formulation and testing’, J. Geophys. Res. 103(D3), 3399–3417.CrossRefGoogle Scholar
  45. Wang, C. and Prinn, R. G.: 1999, ‘Impact of emissions, chemistry and climate on atmospheric carbon monoxide: 100-year predictions from a global chemistry-climate model’, Chemosphere-Global Change Sci. 1(1–3), 73–81.Google Scholar
  46. Webster, M.D., Forest, C. E., Reilly, J. M., Babiker, M. H., Kicklighter, D., Mayer, M., Prinn, R., Sarofim, M. C., Sokolov, A., Stone, P., and Wang, C.: 2003, ‘Uncertainty analysis of climate change and policy response’, Clim. Change 61, 295–320.Google Scholar
  47. Westenbarger, D. A., and Frisvold, G. B.: 1995, ‘Air pollution and farm level crop yields: An empirical analysis of corn and soybeans’, Agric. Resour. Econ. Rev. 24, 156–165.Google Scholar
  48. Wigley, T. M. L., Richels, R., and Edmonds, J. A.: 1996, ‘Economic and environmental choices in the stabilization of atmospheric CO2 concentrations’, Nature 379(6562), 240–243.CrossRefGoogle Scholar
  49. Xiao, X., Kicklighter, D. W., Melillo, J. M., McGuire, A. D., Stone, P. H., and Sokolov, A. P.: 1997, Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: Implications for the carbon budget. Tellus 49B, 18–37.Google Scholar
  50. Xiao, X., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Prinn, R. G., Wang, C., Stone, P. H., and Sokolov, A.: 1998, ‘Transient climate change and net ecosystem production of the terrestrial biosphere’, Glob. Biogeochem. Cyc. 12, 345–360.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • B. Felzer
    • 1
  • J. Reilly
    • 2
  • J. Melillo
    • 1
  • D. Kicklighter
    • 1
  • M. Sarofim
    • 2
  • C. Wang
    • 2
  • R. Prinn
    • 2
  • Q. Zhuang
    • 1
  1. 1.The Ecosystems CenterMarine Biological LaboratoryU.S.A.
  2. 2.Joint Program on the Science and Policy of Global ChangeMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations