Climatic Change

, Volume 67, Issue 2–3, pp 147–160 | Cite as

Quantifying, Understanding and Managing the Carbon Cycle in the Next Decades

  • Josep G. Canadell
  • Philippe Ciais
  • Peter Cox
  • Martin Heimann
Article

Abstract

The human perturbation of the carbon cycle via the release of fossil CO2 and land use change is now well documented and agreed to be the principal cause of climate change. We address three fundamental research areas that require major development if we were to provide policy relevant knowledge for managing the carbon-climate system over the next few decades. The three research areas are: (i) carbon observations and multiple constraint data assimilation; (ii) vulnerability of the carbon-climate system; and (iii) carbon sequestration and sustainable development.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anisimov, O. A., Nelson, F. E., and Pavlov, A. V.: 1999, ‘Predictive scenarios of permafrost development under conditions of global climate change in the XXI century’, Earth Cryol. 3, 15–25.Google Scholar
  2. Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., and Malingreau, J. P.: 2002, ‘Determination of deforestation rates of the world’s humid tropical forests’, Science 297, 999–1002.CrossRefPubMedGoogle Scholar
  3. Betts, R. A.: ‘Offset of the potential sink from boreal forestation by decreases in surface albedo’, Nature 408, 187–190.Google Scholar
  4. Bond-Lamberty, B., Wang, C., and Gower, S.: 2004, ‘Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence’, Global Change Biol. 10, 473–487.Google Scholar
  5. Bousquet, P., Peylin, P., Ciais, P., Le Quere, C., Friedlingstein, P., and Tans, P. P.: 2000, ‘Regional changes in carbon dioxide fluxes of land and oceans since 1980’, Science 290, 1342–1346.CrossRefPubMedGoogle Scholar
  6. Cannell, M. G. R.: 2003, ‘Carbon sequestration and biomass energy offset: Theoretical, potential and achievable capacities globally, in Europe and the UK’, Biomass and Bioenergy 24, 97–116.Google Scholar
  7. Caspersen, J. P., Pacala, S. W., Jenkins, J. C., Hurtt, G. C., Moorcroft, P. R., and Birdsey, R. A.: 2000, ‘Contributions of land use history to carbon accumulation in U.S. forests’, Science 290, 1148–1151.CrossRefPubMedGoogle Scholar
  8. Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: 2004, ‘Amazonian forest dieback under climate-carbon cycle projections for the 21st century’, Theor. Appl. Climatol. 78, 137–156.Google Scholar
  9. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: 2000, ‘Acceleration of global warming due to carbon cycle feedbacks in a coupled model’, Nature 408, 184–187.CrossRefPubMedGoogle Scholar
  10. DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J., and Bounoua, L.: 1999, ‘Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity’, Global Biogeochem. Cycles 13, 803–815.Google Scholar
  11. DeFries, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D., and Townshend, J.: 2002, ‘Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s’, Proc. Natl. Acad. Sci. U. S. A. 99, 14256–14261.Google Scholar
  12. Dufresne, J.-L., Friedlingstein, P., Bethelot, M., Bopp, L., Ciais, P., Fairhead, L., Le Treut, H., and Monfray, P.: 2002, ‘On the magnitude of the feedback between future climate change and the carbon cycle’, Geophys. Res. Lett. 29, doi: 10.1029/2001GL013777.Google Scholar
  13. Flannigan, M. D., Stocks, B. J., and Wotton, B. M.: 2000, ‘Climate change and forest fires’, Sci. Total Environ. 262, 221–229.Google Scholar
  14. Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds, B., Lock, M. A., Sleep, D., Hughes, S., and Hudson, J.: 2004, ‘Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels’, Nature 430, 195–198.Google Scholar
  15. Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner, P.: 2003, ‘How positive is the feedback between climate change and the carbon cycle?’ Tellus 55B, 692–700.Google Scholar
  16. Freibauer, A., Rounsevell, M. D. A., Smith, P., and Verhagen, A.: 2004, ‘Carbon sequestration in European agricultural soils’, Soil Sci. Rev. (in press).Google Scholar
  17. Global Carbon Project: 2003, ‘Science framework and implementation’, in Canadell, J., Dickinson, R., Hibbard, K., Raupach, M., and Young, O. (eds.), Earth System Science Partnership, Report No. 1, GCP Report No. 1, 69 pp., Canberra.Google Scholar
  18. Goldewijk, K. K.: 2001, ‘Estimating global land use change over the past 300 years’, HYDE Database, Global Biogeochem. Cycles 15, 417–433.Google Scholar
  19. Gower, S. T., McMurtrie, R. E., and Murty, D.: 1996, ‘Aboveground net primary production decline with stand age: Potential causes’, Trends Ecol. Evol. 11, 378–382.Google Scholar
  20. Gruber, N., Friedlingstein, P., Field, C. B., Valentini, R., Heimann, M., Richey, J. F., Romero, P., Schulze, E.-D., and Chen, A.: 2004, ‘The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions’, in Field, C. B. and Raupach, M. (eds.), Global Carbon Cycle, Integrating Human, Climate, and the Natural World, Island Press, Washington DC, pp. 45–76.Google Scholar
  21. Gurney, K. R., Law, R. M., Denning, A.S, Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J, Maki, T., Maksyutov, S., Masarie, K., Peylin, P.,Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Shoichi, T., Takahashi, T., and Yuen, C.-W.: 2002, ‘Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models’, Nature 415, 626–630.Google Scholar
  22. Herron, N., Davis, R., and Jones, R.: 2002, ‘The effects of large-scale afforestation and climate change on water allocation in the Macquarie River catchment, NSW, Australia’, J. Environ. Manage. 65, 369–381.Google Scholar
  23. Houghton, R.: 2003, ‘Why are estimates of the terrestrial carbon balance so different?’, Global Change Biol. 9, 500–509.Google Scholar
  24. Houghton, J. T., Ding, Y., Griggs, D. J., Norguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.: 2001, ‘Climate change 2001: The scientific basis’, WGI-Report of the Intergov. Panel on Climate Change, Cambridge University Press, Cambridge, UK, 881 pp.Google Scholar
  25. Houghton, R. A., Hackler, J. L., and Lawrence, K. T.: 2000, ‘Changes in terrestrial carbon storage in the United States. 2: The role of fire and fire management’, Global Ecol. Biogeog. 9, 145–170.Google Scholar
  26. IGCO: 2004, ‘Integrated global carbon observation theme. A strategy to realise a coordinated system of integrated global carbon cycle observations’, IGOS Carbon Theme Report, IGBP secretariat, Sweden.Google Scholar
  27. Jenkinson, D. S., Adams, D. E., and Wild, A.: 1991, ‘Model estimates of CO2 emissions from soil in response to global warming’, Nature 351, 304–306.CrossRefGoogle Scholar
  28. Jobbagy, E. G. and Jackson, R. B.: 2004, ‘Groundwater use and salinization with grassland afforestation’, Global Change Biol. 10, 1299–1312.Google Scholar
  29. Kauppi, P. E., Mielikäinen, K., and Kuusela, K.: 1992, ‘Biomass and carbon budget of European forests, 1971 to 1990’, Science 256, 70–74.Google Scholar
  30. Kaminski, T., Knorr, W., Rayner, P., and Heimann, M.: 2002, ‘Assimilating atmospheric data into a terrestrial biosphere model. A case study of the seasonal cycle’, Global Biogeochem. Cycles 16, doi:10.1029/2001GB001463.Google Scholar
  31. Law, B. E., Sun, O. J., Campbell, J., van Tuyl, S., and Thornton, P. E.: 2003, ‘Changes in carbon stores and fluxes in a chronosequence of ponderosa pine’, Global Change Biol. 9, 510–524.Google Scholar
  32. Le Quere, C., Aumont, O., Bopp, L., Bousquet, P., Ciais, P., Francey, R., Heimann, M., Keeling, C. D., Keeling, R. F., Kheshgi, H., Peylin, P., Piper, S. C., Prentice, I. C., and Rayner, P. J.: 2003, ‘Two decades of ocean CO2 sink and variability’, Tellus Series B, Chem. Phys. Meteorol. 55, 649–656.CrossRefGoogle Scholar
  33. Mack, F., Hoffstadt, J., Esser, G., and Goldammer, J. G.: 1996, ‘Modeling the influence of vegetation fires on the global carbon cycle’, in Levine, J. S. (ed.), Biomass Burning and Global Change, Vol. I, MIT Press, Cambridge, MA.Google Scholar
  34. Metz, B., Davidson, O., Swart, R., and Pan, J.: 2001, ‘Climate change 2001: Mitigation’, WGIII – Report of Intergov. Panel on Climate Change, Cambridge University Press, Cambridge, UK, 752 pp.Google Scholar
  35. Nepstad, D. C., Verissimo, A., Alencar, A., Nobres, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Mounthiho, P., Mendoza, E., Cochrane, M., and Brooks, V.: 1999, ‘Large-scale impoverishment of Amazonian forests by logging and fire’, Nature 398, 505–508.CrossRefGoogle Scholar
  36. Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., Heath, L., Sundquist, E. T., Stallard, R. F., Ciais, P., Moorcroft, P., Caspersen, J. P., Shevliakova, E., Moore, B., Kohlmaier, G., Holland, E., Gloor, M., Harmon, M. E., Fan, S.-M., Sarmiento, J. L., Goodale, C. L., Schimel, D., and Field, C. B.: 2001, ‘Consistent land and atmosphere-based U.S. carbon sink estimates’, Science 292, 2316–2320.CrossRefPubMedGoogle Scholar
  37. Page, S., Siegert, F., Rieley, J. O., Boehm, H.-D. V., and Adi, J., Suwido, L.: 2000, ‘The amount of carbon released from peat and forest fires in Indonesia during 1997’, Nature 420, 51–65.Google Scholar
  38. Prentice, C.: 2001, ‘The carbon cycle and atmospheric carbon dioxide’, in Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, U.K., pp. 183–237.Google Scholar
  39. Raupach, M. R., Rayner, P. J., Barret, D. J., DeFries, R., Heimann, M., Ojima, D. S., Quegan, S., and Schmullius, C.: 2004a, ‘Model-data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications’, Global Change Biol. (in press).Google Scholar
  40. Raupach, M., Canadell, J. G., Bakker, D., Ciais, P., Sanz, M.-J., Fang, J. Y., Melillo, J., Romero-Lankao, P., Sathaye, J., Schulze, D., Smith, P., and Tschirley, J.: 2004b, ‘Interactions between CO2 stabilisation pathways and requirements for a sustainable earth system’, in Field, C. and Raupach, M. (eds.), Global Carbon Cycle, ‘Integrating Humans, Climate and the Natural World’, Island Press, Washington DC.Google Scholar
  41. Rodenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: 2003, ‘CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport’, Atmos. Chem. Phys. 3 1919–1964CrossRefGoogle Scholar
  42. Sabine, C. L., Heimann, M., Artaxo, P., Bakker, D. C. E., Chen, C.-T. A., Field, C. B., Gruber, N., Le Quere, C., Prinn, R. G., Richey, J. E., Romero, P., Sathaye, J. A., and Valentini, R.: 2004, ‘Current status of past trends of the global carbon cycle’, in Field, C. and Raupach, M. (eds.), Global Carbon Cycle, Integrating Humans, Climate and the Natural World, Island Press, Washington DC, pp. 17–44.Google Scholar
  43. Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. A., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, B. III, Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: 2001, ‘Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems’, Nature 414, 169–172.CrossRefPubMedGoogle Scholar
  44. Tarnocai, C.: 1999, ‘The effect of climate warming on the carbon balance of cryosols in Canada’, Permafrost Periglac. Process. 10, 251–263.Google Scholar
  45. Tarnocai, C., Kimble, J., and Broll, G.: 2003, ‘Determining carbon stocks in cryosols using the Northern and Mid Latitudes soil database’, in Permafrost, P. and Springman, A. (eds.), Swets and Zeitlinger, Lisse, pp. 1129–1134.Google Scholar
  46. TCO: 2002, ‘Terrestrial carbon observation. The Frascati report on in situ carbon data and information’, in Cihlar, J., Heimann, M., and Olson, R. (eds.), FAO, Rome.Google Scholar
  47. van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L., Kasibhatla, P. S., Arellano, A. F., Olsen, S. C., and Kasischke, E. S.: 2004, ‘Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period’, Science 303, 73–76.Google Scholar
  48. Wang, Y. P. and Barret, D. J.: 2003, ‘Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach I. Using remotely sensed data and ecological observations of net primary production’, Tellus Series B 55, 270–289.Google Scholar
  49. Wang, Y. P. and McGregor, G. L.: 2003, ‘Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach II. The atmospheric constraint’, Tellus Series B 55, 290–304.Google Scholar
  50. Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., and Dokken, D. J.: 2001, ‘Land use, land-use change and forestry’, Special report of IPCC, Cambridge, UK, Cambridge University Press, Cambridge, UK, 377 pp.Google Scholar
  51. Zimov, S. and Zimowa, G.: 2004, ‘Modeling of soil and ground temperature in cryolitozone.(submitted).Google Scholar
  52. Zimov, S. A. et al.: 1993, ‘Winter biotic activity and production of CO2 in Siberian soils – a factor in the Greenhouse-effect’, J. Geophys. Res.-Atmos. 98, 5017–5023.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Josep G. Canadell
    • 1
  • Philippe Ciais
    • 2
  • Peter Cox
    • 3
  • Martin Heimann
    • 4
  1. 1.CSIRO Division of Atmospheric ResearchGlobal Carbon Project, Earth Observation CentreAustralia
  2. 2.Laboratorie des Sciences du Climat et du l’EnvironnementCentre d’Etudes de l’Orme des Merisiers - Bat 709France
  3. 3.Hadley Centre for Climate Prediction and ResearchMet OfficeUnited Kingdom
  4. 4.Max-Planck-Institut for BiogeochemistryGermany

Personalised recommendations