Climatic Change

, Volume 67, Issue 2–3, pp 185–209

‘The Influence of Land Use Change On Global-Scale Fluxes of Carbon from Terrestrial Ecosystems’

  • P. E. Levy
  • A. D. Friend
  • A. White
  • M. G. R. Cannell
Article

Abstract

A process-based approach to modelling the effects of land use change and climate change on the carbon balance of terrestrial ecosystems was applied at global scale. Simulations were run both with and without land use change. In the absence of land use change between 1700 and 1990, carbon storage in terrestrial ecosystems was predicted to increase by 145 Pg C. When land use change was represented during this period, terrestrial ecosystems became a net source of 97 Pg C. Land use change was directly responsible for a flux of 222 Pg C, slightly higher but close to estimates from other studies. The model was then run between 1990 and 2100 with a climate simulated by a GCM. Simulations were run with three land use change scenarios: 1. no land use change; 2. land use change specified by the SRES B2 scenario, and; 3. land use change scaled with population change in the B2 scenario. In the first two simulations with no or limited land use change, the net terrestrial carbon sink was substantial (358 and 257 Pg C, respectively). However, with the population-based land-use change scenario, the losses of carbon through land use change were close to the carbon gains through enhanced net ecosystem productivity, resulting in a net sink near zero. Future changes in land use are highly uncertain, but will have a large impact on the future terrestrial carbon balance. This study attempts to provide some bounds on how land use change may affect the carbon sink over the nextcentury.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besford, R. T., Mousseau, M., and Matteucci, G.: 1998, ‘Biochemistry, Physiology and Biophysics of Photosynthesis’, in Jarvis, P. G. (ed.), European Forests and Global Change, Cambridge University Press, Cambridge, pp. 215–235.Google Scholar
  2. Betts, R. A.: 2000, ‘Offset of the potential carbon sink from boreal forestation by decreases in surface albedo’, Nature 408, 187–190.Google Scholar
  3. Brown, S., Lugo, A. E., and Chapman, J.: 1986, ‘Biomass of tropical tree plantations and its implications for the global carbon budget’, Can. J. Forest Res. 16, 390–394.Google Scholar
  4. Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R. J.: 1995, ‘A large northern-hemisphere terrestrial sink of CO2 indicated by the 13C/12C ratio of atmospheric CO2’, Science 269, 1098–1102.Google Scholar
  5. Comins, H. N. and McMurtrie, R. E.: 1993, ‘Long-term response of nutrient-limited forests to CO2 enrichment – equilibrium behavior of plant-soil models’, Ecol. Appl. 3, 666–681.Google Scholar
  6. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: 2000, ‘Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model’, Nature 408, 184–187.CrossRefPubMedGoogle Scholar
  7. Cramer, W.: 2001, ‘Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models’, Global Change Biol. 7, 357–373.Google Scholar
  8. DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J., and Bounoua, L.: 1999, ‘Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity’, Global Biogeochem. Cycle 13, 803–815.Google Scholar
  9. Dewar, R. C., Medlyn, B. E., and McMurtrie, R. E.: 1999, ‘Acclimation of the respiration photosynthesis ratio to temperature: Insights from a model’, Global Change Biol. 5, 615–622.Google Scholar
  10. Douville, H., Planton, S., Royer, J. F., Stephenson, D. B., Tyteca, S., Kergoat, L., Lafont, S., and Betts, R. A.: 2000, ‘Importance of vegetation feedbacks in doubled-CO2 climate experiments’, J. Geophys. Res. Atmos. 105, 14841–14861.Google Scholar
  11. Fahey, T. J.: 1983, ‘Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta ssp. latifolia) ecosystems, southeastern Wyoming’, Ecol. Monogr. 53, 51–72.Google Scholar
  12. Farquhar, G. D. and von Caemmerer, S.: 1982, ‘Modelling of Photosynthetic Response to Environmental Conditions’, in Lange, O. L., Nobel, P., Osmond, C. B. and Ziegler, H. (eds.), Physiological Plant Ecology II. Water Relations and Carbon Assimilation, Springer-Verlag, Berlin, pp. 549–587.Google Scholar
  13. Friend, A. D., Stevens, A. K., Knox, R. G., and Cannell, M. G. R.: 1997, ‘A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0)’, Ecol. Model. 95, 249–287.Google Scholar
  14. Friend, A. D. and White, A.: 2000, ‘Evaluation and analysis of a dynamic terrestrial ecosystem model under preindustrial conditions at the global scale’, Global Biogeochem. Cycle 14, 1173–1190.Google Scholar
  15. Giardina, C. P. and Ryan, M. G.: 2000, ‘Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature’, Nature 404, 858–861.CrossRefPubMedGoogle Scholar
  16. Gifford, R. M.: 1995, ‘Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: Long-term vs short-term distinctions for modelling’, Global Change Biol. 1, 385–396.Google Scholar
  17. Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: 2000, ‘The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments’, Clim. Dyn. 16, 147–168.Google Scholar
  18. Grier, C. C.: 1978, ‘A Tsuga heterophylla – Picea sitchensis ecosystem of coastal Oregon: decomposition and nutriant balance of fallen logs’, Can. J. Forest Res.-Rev. Can. Rech. For. 18, 198–206.CrossRefGoogle Scholar
  19. Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B.C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C. W.: 2002, ‘Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models’, Nature 415, 626–630.Google Scholar
  20. Hao, W. M., Liu, M.-H., and Crutzen, P. J.: 1990, ‘Estimates of Annual and Regional Releases of CO2 and Other Trace Gases to the Atmosphere from Fires in the Tropics, Based on the FAO Statistics for the Period 1975–80’, in Goldammer, J. G. (ed.), Fire in the Tropical Biota. Ecosystem Processes and Global Challenges, Springer-Verlag, Berlin, pp. 440–462.Google Scholar
  21. Houghton, R. A.: 1991, ‘Releases of carbon to the atmosphere from degradation of forests in Tropical Asia’, Can. J. For. Res.-Rev. Can. Rech. For. 21, 132–142.Google Scholar
  22. Houghton, R. A.: 1995, ‘Land-use change and the carbon-cycle’, Global Change Biol. 1, 275–287.Google Scholar
  23. Houghton, R. A.: 1999, ‘The annual net flux of carbon to the atmosphere from changes in land use 1850–1990’, Tellus Ser. B Chem. Phys. Meteorol. 51, 298–313.Google Scholar
  24. Houghton, R. A. and Hackler, J. L.: 1995, Continental Scale Estimates of the Biotic Carbon Flux from Land Cover Change: 1850 to 1980, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/CDIAC-79: 144.Google Scholar
  25. Houghton, R. A. and Hackler, J. L.: 1999, ‘Emissions of carbon from forestry and land-use change in tropical Asia’, Global Change Biol. 5, 481–492.Google Scholar
  26. Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., and Woodwell, G. M.: 1983, ‘Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere’, Ecol. Monogr. 53, 235–262.Google Scholar
  27. Houghton, R. A., Lefkowitz, D. S., and Skole, D. L.: 1991, ‘Changes in the landscape of Latin America between 1850 and 1985. II. Net release of CO2 to the atmosphere’, Forest Ecol. Manage. 38, 173–199.Google Scholar
  28. Houghton, R. A., Lefkowitz, D. S., and Skole, D. L.: 1991, ‘Changes in the landscape of Latin-America between 1850 and 1985. 1. Progressive loss of forests’, Forest Ecol. Manage. 38, 143–172.Google Scholar
  29. House, J. I., Prentice, I. C., and Le Quere, C.: 2002, ‘Maximum impacts of future reforestation or deforestation on atmospheric CO2’, Global Change Biol. 8, 1047–1052.Google Scholar
  30. IPCC: 2000, Emissions Scenarios. A Special Report of Working Group II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 612 pp.Google Scholar
  31. John, D. M.: 1973, ‘Accumulation and decay of litter and net production of forest in tropical West Africa’, Oikos 24, 430–435.Google Scholar
  32. Johns, T. C., Gregory, J. M., Ingram, W. J., Johnson, C. E., Jones, A., Lowe, J. A., Mitchell, J. F. B., Roberts, D. L., Sexton, D. M. H., Stevenson, D. S., Tett, S. F. B., and Woodage, M. J.: 2003, ‘Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios’, Clim. Dyn. 20, 583–612.Google Scholar
  33. Keeling, C. D., Chin, J. F. S., and Whorf, T. P.: 1996, ‘Increased activity of northern vegetation inferred from atmospheric CO2 measurements’, Nature 382, 146–149.CrossRefGoogle Scholar
  34. Lugo, A. E., Sanchez, M. J., and Brown, S.: 1986, ‘Land use and organic carbon content of some subtropical soils’, Plant Soil 96, 185–196.Google Scholar
  35. Martin, M., Dickinson, R. E., and Yang, Z. L.: 1999, ‘Use of a coupled land surface general circulation model to examine the impacts of doubled stomatal resistance on the water resources of the American southwest’, J. Clim. 12, 3359–3375.Google Scholar
  36. McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: 2001, ‘Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models’, Global Biogeochem. Cycle 15, 183–206.Google Scholar
  37. Nepstad, D. C., Uhl, C., and Serrao, E. A. S.: 1991, ‘Recuperation of a degraded Amazonian landscape – forest recovery and agricultural restoration’, Ambio 20, 248–255.Google Scholar
  38. Olson, J. S., Watts, J. A., and Allison, L. J.: 1983, Carbon in Live Vegetation of Major World Ecosystems, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 154 pp.Google Scholar
  39. Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: 1987, ‘Analysis of factors controlling soil organic matter levels in Great Plains grasslands’, Soil Sci. Soc. Am. J. 51, 1173–1179.CrossRefGoogle Scholar
  40. Prentice I. C., et al.: 2001, ‘The carbon cycle and atmospheric carbon dioxide’, in Houghton, J. T., et al. (eds.), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp. 183–238.Google Scholar
  41. Ramankutty, N. and Foley, J. A.: 1999, ‘Estimating historical changes in global land cover: Croplands from 1700 to 1992’, Global Biogeochem. Cycle 13, 997–1027.Google Scholar
  42. Ramankutty, N., Foley, J. A., Norman, J., and McSweeney, K.: 2002, ‘The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change’, Global Ecol. Biogeogr. 11, 377–392.Google Scholar
  43. Raupach, M. R.: 1998, ‘Influences of local feedbacks on land-air exchanges of energy and carbon’, Global Change Biol. 4, 477–494.Google Scholar
  44. Reynolds, J. H. and Ford, E. D.: 1999, ‘Multi-criteria assessment of ecological process models’, Ecology 80, 538–553.Google Scholar
  45. Ryan, M. G.: 1991, ‘Effects of climate change on plant respiration’, Ecol. Appl. 1, 157–167.Google Scholar
  46. Saldarriaga, J. G.: 1987, ‘Recovery following shifting cultivation’, in Jordan, C. F. (ed.), Amazonian Rain Forests, Springer-Verlag, New York, pp. 24–33.Google Scholar
  47. Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., and Hall, F. G.: 1992, ‘Canopy reflectance, photosynthesis, and transpiration. 3. A reanalysis using improved leaf models and a new canopy integration scheme’, Remote Sens. Environ. 42, 187–216.Google Scholar
  48. Thornley, J. H. M. and Cannell, M. G. R.: 2000, ‘Modelling the components of respiration: Representation and realism’, Ann. Bot. 85, 55–67.Google Scholar
  49. Uusivuori, J., Lehto, E., and Palo, M.: 2002, ‘Population, income and ecological conditions as determinants of forest area variation in the tropics’, Global Environ. Change Human Policy Dimens. 12, 313–323.Google Scholar
  50. van Veen, J. A. and Kuikman, P. J.: 1990, ‘Soil structure’, Biogeochemistry 11, 213–233.Google Scholar
  51. Voroney, R. P. and Angers, D. A.: 1995, ‘Analysis of the Short-Term Effects of Management on Soil Organic Matter Using the CENTURY Model’, in Lal, R., Kimble, J., Levine, E. and Stewart, B. A. (eds.), Soil Management and Greenhouse Effect, Lewis Publishers, Boca Raton, pp. 113–120.Google Scholar
  52. Waring, R. H., Landsberg, J. J. and Williams, M.: 1998, ‘Net primary production of forests: a constant fraction of gross primary production?’, Tree Physiol. 18, 129–134.Google Scholar
  53. Waring, R. H. and Running, S. W.: 1998, Forest Ecosystems: Analysis at Multiple Scales, Academic Press, San Diego, 370 pp.Google Scholar
  54. White, A., Cannell, M. G. R., and Friend, A. D.: 1999, ‘Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment’, Global Environ. Change Human Policy Dimens. 9, S21–S30.Google Scholar
  55. White, A., Cannell, M. G. R., and Friend, A. D.: 2000, ‘CO2 stabilization, climate change and the terrestrial carbon sink’, Global Change Biol. 6, 817–833.Google Scholar
  56. White, A., Cannell, M. G. R., and Friend, A. D.: 2000, ‘The high-latitude terrestrial carbon sink: A model analysis’, Global Change Biol. 6, 227–245.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • P. E. Levy
    • 1
  • A. D. Friend
    • 2
  • A. White
    • 3
  • M. G. R. Cannell
    • 1
  1. 1.Centre for Ecology and HydrologyPenicuikU.K.
  2. 2.NASA GISSNew YorkU.S.A.
  3. 3.Department of MathematicsHeriot-Watt UniversityEdinburghU.K.

Personalised recommendations