Climatic Change

, Volume 67, Issue 2–3, pp 237–246 | Cite as

Forage Yield-Based Carbon Storage in Grasslands of China



Forage yield-based carbon storage in 18 grasslands of China was estimated according to the detailed investigation of grassland area and forage yield (standing crop), which were derived from a 10-year national grassland survey. The total forage yield carbon in Chinese grasslands is 134.09 Tg C for ca. 299 × 106 ha of grassland area and 1232 kg/ha of mean forage yield. The carbon storage is different depending on grassland types and climatic regions. Meadow, steppe and tussock occupy 93.3% (125.14 Tg C), and desert and swamp only accounts for 6.7% (8.95 Tg C) of total forage yield carbon. Forage yield carbon is stored largely in temperate (38.4%, 51.54 Tg C) and alpine regions (30.4%, 40.78 Tg C), and to less extent in tropical regions (22.1%, 29.66 Tg C). These three regions take 91% of the forage yield carbon in grasslands of China. The warm-temperate region accounts for only 9% (12.1 Tg C) of forage yields carbon. The forage yield-based carbon in grasslands of China is more accurate than the site biomass-based carbon estimate and the carbon density-based estimate. Although, forage yield carbon storage is small compared with the total carbon storage in China, carbon budgets of grasslands are often a dominant component in many regions and provide an important management opportunity to enhance terrestrial carbon sinks in vast areas of China.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cao, M. K., Prince, S. D., Li, K. R., Tao, B., Small, J., and Shao, X. M.: 2003 ‘Response of terrestrial carbon uptake to climate interannual variability in China’ Global Change Biol. 9 536–546.Google Scholar
  2. Chen, Y. F. and Fischer, G.: 1998, A New Digital Geo-referenced Database of Grassland in China, Interim Report IR-98-062, International Institute for Applied Systems Analysis (IIASA), Laxenburg, 24pp.Google Scholar
  3. DAHV (Department of Animal Husbandry and Veterinary, Institute of Grassland, Chinese Academy of Agricultural Sciences) and CISNR (Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences).: 1994, Data on grassland resources of China, China Agricultural Science and Technology Press, Beijing, pp. 10–75.Google Scholar
  4. Dong, Y. S., Zhang, S., Qi, Y. C., Chen, Z. Z., and Geng, Y. B.: 2000, ‘Fluxes of CO2, N2O and CH4 from a typical temperate grassland in inner Mongolia and its daily variation’, Chinese Sci. Bull. 45, 1590–1594.Google Scholar
  5. Duan, Z. H., Xiao, H. L., Dong, Z. B., He, X. D., and Wang, G.: 2001 ‘Estimate of total CO2 output from desertified sandy land in China’, Atmos. Environ., 35, 5915–5921.Google Scholar
  6. ECVC (Editorial Committee for Vegetation of China).: 1980, Vegetation of China, Science Press, Beijing, 1382p.Google Scholar
  7. Fang, J. Y. and Wang, Z. M.: 2001, ‘Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass’, Ecol. Res., 16, 587–592.Google Scholar
  8. Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q., and Ci, L. J.: 2001, ‘Changes in forest biomass carbon storage in China between 1949 and 1998’, Science, 292, 2320–2322.Google Scholar
  9. Fang, J. Y., Liu, G. H., and Xu, S. L.: 1996, ‘Carbon pools in terrestrial ecosystems in China’, in: Wang, R. S., Fang, J. Y., Gao, L. and Feng, Z. W. (eds.), Hot Spots in Modern Ecology, China Science and Technology Press,Beijing, pp. 251–277.Google Scholar
  10. Fang, J. Y., Wang, G. G., Liu, G. H., and Xu, S. L.: 1998 ‘Forest biomass of China: An estimate based on the biomass-volume relationship’, Ecol. Appl. 8, 1084–1091.Google Scholar
  11. Feng, Q., Cheng, G. D., and Mikami, M.: 2001, ‘The carbon cycle of sandy lands in China and its global significance’, Climatic Change, 48, 535–549.Google Scholar
  12. Feng, Z. W., Wang, X. K., and Wu, G.: 1999, Biomass and Primary Productivity of Forest Ecosystems in China, Science Press, Beijing, 241pp.Google Scholar
  13. Hall, D. O., Ojima, D. S., Parton, W. J., and Scurlock, J. M. O.: 1995, ‘Response of temperate and tropical grasslands to CO2 and climate change’, J. Biogeography, 22, 537–547.Google Scholar
  14. House, J. I. and Hall, D. O.: 2001, ‘Productivity of tropical savannas and grasslands’, in Roy, J., Sangier, B. and Mooney, H. A. (eds.), Terrestrial Global Productivity, Academic Press, San Diego, pp. 363–400.Google Scholar
  15. Knapp, A. K., Fay, P. A., Blair, J. M., Collins, S. L., Smith, M. D., Carlisle, J. D., Harper, C. W., Danner, B. T., Lett, M. S., and McCarron, K. M.: 2002, ‘Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland’, Science, 298, 2202–2205CrossRefPubMedGoogle Scholar
  16. Li, L. H., Hang, X. G., Wang, Q. B., Bai, W. M., Bai, Y. F., Yan, Z. D., Chen, Q. S., Zhang, Y., Yang, J., Li, X., and Song, S. H.: 2002 ‘Soil carbon balance in a native temperate grassland in the Xilin River basin of Inner Mongolia’, Acta Botanica Sinica, 44, 740–742Google Scholar
  17. Ni, J.: 2001, ‘Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change’, Climatic Change, 49, 339–358.Google Scholar
  18. Ni, J.: 2002, ‘Carbon storage in grasslands of China’, J. Arid Environ., 50, 205–218.Google Scholar
  19. Ni, J.: 2003, ‘Net primary productivity in forests of China: Scaling-up of national inventory data and comparison with model predictions’, Forest Ecol. Manage., 176, 485–496.Google Scholar
  20. Ni, J.: ‘Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China’, Plant Ecol. (in press).Google Scholar
  21. Ni, J., Zhang, X. S., and Scurlock, J. M. O.: 2001, ‘Synthesis and analysis of biomass and net primary productivity in Chinese forests’, Ann. Forest Sci., 58, 351–384.Google Scholar
  22. Olson, J. S., Watts, J. A., and Allison, L. J.: 1983, Carbon in Live Vegetation of Major World Ecosystems, Oak Ridge National Laboratory, Oak Ridge, pp. 50–51.Google Scholar
  23. Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J. C., Seastedt, T., Garcia Moya, E., Kamnalrut A., and Kinyamario. J. I.: 1993, ‘Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide’, Global Biogeochem. Cycles, 7, 785–809.CrossRefGoogle Scholar
  24. Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Schimel, D. S., Hall, D. O., and Group Members SCOPEGRAM.: 1995, ‘Impact of climate change on grassland production and soil carbon worldwide’, Global Change Biol., 1, 13–22.Google Scholar
  25. Sala, O. E.: 2001, ‘Productivity of temperate grasslands’, in Roy, J., Sangier, B. and Mooney, H. A. (eds.), Terrestrial Global Productivity, Academic Press, San Diego, pp. 285–300.Google Scholar
  26. Sala, O. E., Lauenroth, W. K. and Burke, I. C.: 1996, ‘Carbon budgets of temperate grasslands and the effects of global change’, in Breymeyer, A. I., Hall, D. O., Melillo, J. M. and Ågren, G. I. (eds.), Global Change: Effects on Coniferous Forests and Grasslands, John Wiley and Sons Ltd, Chichester, pp. 101–120.Google Scholar
  27. Scurlock, J. M. O. and Hall, D. O.: 1998, ‘The global carbon sink: A grassland perspective’, Global Change Biol., 4, 229–233.Google Scholar
  28. Scurlock, J. M. O., Johnson, K., and Olson, R. J.: 2002, ‘Estimating net primary productivity from grassland biomass dynamics measurements’, Global Change Biol., 8, 736–753.Google Scholar
  29. Shaw, M. R., Zavaleta, E. S., Chiariello, N. R., Cleland, E. E., Mooney, H. A., and Field, C. B.: 2002, ‘Grassland responses to global environmental changes suppressed by elevated CO2’, Science, 298, 1987–1990.CrossRefPubMedGoogle Scholar
  30. Tate, K. R., Parsholtam, A., and Ross, D. J.: 1995, ‘Soil carbon storage and turnover in temperate forests and grasslands: A New Zealand perspective’, J. Biogeography, 22, 695–700.Google Scholar
  31. Thornley, J. H. M. and Cannell, M. G. R.: 1997, ‘Temperate grassland responses to climate change: An analysis using the Hurley Pasture Model’, Ann. Bot., 80, 205–221.Google Scholar
  32. Thornley, J. H. M., Fowler, D., and Cannell, M. G. R.: 1991, ‘Terrestrial carbon storage resulting from CO2 and nitrogen fertilization in temperate grasslands’, Plant Cell and Environ., 14, 1007–1011.Google Scholar
  33. Wang, G. X., Qian, J., Cheng, G. D., and Lai, Y. M.: 2002, ‘Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication’, Sci. Total Environ., 291, 207–217.Google Scholar
  34. Wang, X. K., Feng, Z. W., and Ouyang, Z. Y.: 2001, ‘The impact of human disturbance on vegetative carbon storage in forest ecosystems in China’, Forest Ecol. Manage., 148, 117–123.Google Scholar
  35. Wang, S. Q., Tian, H. Q., Liu, J. Y., and Pan, S. F.: 2003, ‘Pattern and change of soil organic carbon storage in China: 1960s–1980s’, Tellus B, 55, 416–427.Google Scholar
  36. Wu, H. B., Guo, Z. T., and Peng, C. H.: 2003a, ‘Distribution and storage of soil organic carbon in China’, Global Biogeochem. Cycles, 17, Art No. 1048, doi: 10.1029/2001GB001844.Google Scholar
  37. Wu, H. B., Guo, Z. T., and Peng, C. H.: 2003b, ‘Land use induced changes of organic carbon storage in soils of China’, Global Change Biol., 9, 305–315.Google Scholar
  38. Zhou, C. H., Zhou, Q. M., and Wang, S. Q.: 2003, ‘Estimating and analyzing the spatial distribution of soil organic carbon in China’, AMBIO, 32, 6–12.Google Scholar
  39. Zinke, P. J., Stangenberger, A. G., Post, W. M., Emanuel, W. R., and Olson, J. S.: 1984, Worldwide Organic Soil Carbon and Nitrogen Data, Oak Ridge National Laboratory, Oak Ridge.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Laboratory of Quantitative Vegetation EcologyInstitute of Botany, Chinese Academy of SciencesChina
  2. 2.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations