Skip to main content
Log in

Alfvén-drift turbulence suppression as triggering mechanism for LH transition

  • Invited Papers and Discussion Summaries
  • Core/Edge Coupling
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The Alfvén drift turbulence suppression at the plasma edge is suggested as a triggering mechanism for the L to H transition. The stability theory of Alfvén drift-waves shows that with increasing plasma pressure the Alfvén waves get coupled to electron drift waves and as a consequence the unstable long wavelength perturbations (most important for transport) are suppressed. The instability can be characterised by two significant parameters, i.e. the normalised plasma beta, β n , and the normalised collision frequency, v n . The resulting turbulent transport coefficient is suppressed when the normalised beta is greater than a critical value, i.e. β n >1+v 2/3 n , which depends on the normalised collision frequency v n . The transport coefficients change their dependence on plasma parameters at this threshold. Therefore, the possible scenario for the development of the H-mode could be associated with the stabilisation of the electron fluctuation at the plasma edge. The Alfvén drift-wave model predicts the experimental trend of a roughly linear dependence of threshold temperature on magnetic field, with a weak dependence on density at high densities and a strong dependence on density at lower densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Durst, R.J. Fonck, J.S. Kim, S.F. Paul, N. Bretz, C. Bush, Z. Chang and R Hulse: Phys. Rev. Letters 71 (1993) 3135.

    Article  ADS  Google Scholar 

  2. H.R. Wilson and J.W. Connor: “Theories of the L-H Transition Phenomenon and their Predictions”, to be published.

  3. B. Scott, S. Camargo, and F. Jenko: “Self-Consistent Computation of Transport by Fluid Drift Turbulence in Tokamak Geometry”, 16th IAEA Fusion Energy Conference, Montreal, Canada, 1996, IAEA-CN-64/D-3-4.

  4. O. Pogutse, Yu. Igitkhanov et al.: Proc. 24th EPS, Berchtesgaden, 1997, Part III, p. 1041.

    Google Scholar 

  5. B.A. Carreras et al.: Proc. 20 th EPS conference on Controlled Fusion and Plasma Physics, Lisboa, 1993, Vol. 4, p. 1419.

    Google Scholar 

  6. O. Pogutse et al.: Plasma Phys. Control. Fusion 36 (1994) 1963.

    Article  ADS  Google Scholar 

  7. A. Mikhailovskii: Theory of Plasma Instabilities. Consultants Bureau, New York-London, 1974.

    Google Scholar 

  8. B.B. Kadsomtsev and O.P. Pogutse: Reviews of Plasma Physics, Vol. 5. Consultant Bureau, New York-London, 1970, p. 249.

    Google Scholar 

  9. P.R. Thomas, V.P. Bhatnagar and the JET Team: Preprint JET-P(97)52.

  10. S.P. Hirshman and K. Molvig: Phys. Rev. Letters 42 (1979) 648.

    Article  ADS  Google Scholar 

  11. K. Molvig, S.P. Hirshman and J.C. Whitson: Phys. Rev. Letters 43 (1979) 582.

    Article  ADS  Google Scholar 

  12. W.W. Lee et al.: Phys. Rev. Letters 43 (1979) 347.

    Article  ADS  Google Scholar 

  13. R.D. Sydora et al.: Phys. Rev. Letters 57 (1986) 3269.

    Article  ADS  Google Scholar 

  14. A. Zeiler, J.F. Drake and D. Biskamp: Phys. Plasmas 4 (1997) 991.

    Article  ADS  Google Scholar 

  15. B. Scott and F. Jenko: Proc. 24th EPS, Berchtesgaden, 1997, part IV, p. 1545.

    Google Scholar 

  16. A. Zeiler, J.F. Drake, D. Biskamp and P.N. Guzdar: Phys. Plasmas 3 (1996) 2951.

    Article  ADS  Google Scholar 

  17. B.N. Rogers and J.K. Drake: Phys. Rev. Letters 79 (1997) 229.

    Article  ADS  Google Scholar 

  18. M. Keilhacker and the JET Team: Preprint JET-P(97)55, San Diego, 6–10th October, 1997.

  19. H. Nordman et al.: Nucl. Fusion 29 (1989) 251; G. Hu et al.: Phys. Plasmas 4 (1997) 2116.

    Google Scholar 

  20. B.B. Kadsomtsev and O.P. Pogutse: Reviews of Plasma Physics, Vol. 5. Consultant Bureau, New York-London, 1970, p. 249.

    Google Scholar 

  21. A.I. Smolyakov and P.N. Yushmanov: Nucl. Fusion 33 (1993) 383.

    Article  Google Scholar 

  22. M. Kaufmann et al.: Proc. 16th IAEA Conference, Montreal, Canada, 1996, IAEA-CN-64/O2-5.

  23. H. Zohm: Plasma Physics and Controlled Fusion 38 (1996) 105.

    Article  ADS  Google Scholar 

  24. A. Hubbard et al.: Proc. 6th IAEA Conference, Montreal, Canada, 1996, IAEA-CN-64/AP2-11.

  25. A. Hubbard and all Alcator C-Mod Group: “Recent H-mode result on Alcator C-Mod”, presented at IPP-C-Mod meeting, Garching, March 1997.

  26. W. Suttrop et al.: Plasma Phys. Control. Fusion 39 (1197) 2051.

    Article  Google Scholar 

  27. T. Osborne et al.: Bulletin of the APS, DPP Meeting, Denver, Nov. 11–15, 1996.

  28. D.M. Thomas et al.: Bulletin of the APS, DPP Meeting, Denver, Nov. 11–15, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogutse, O., Igitkhanov, Y. Alfvén-drift turbulence suppression as triggering mechanism for LH transition. Czech J Phys 48 (Suppl 2), 39–49 (1998). https://doi.org/10.1007/s10582-998-0019-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-998-0019-7

Keywords

Navigation