Skip to main content
Log in

Rapid methods for the determination of long-lived radionuclides in environmental samples by ICP-SFMS and radioanalytical techniques

  • Nuclear Analytical Methods
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Two improved sample preparation methods for the determination of americium and plutonium (Method 1) and plutonium (Method 2) from environmental samples by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) and alpha spectrometry are presented. Both procedures involve a rapid CaF2 co-precipitation step for pre-concentration and matrix removal followed by extraction chromatographic separations. The average recovery after sample preparation was better than 85 % for both americium and plutonium. The method developed also focused on the elimination of possible interferences in the mass spectrometric analysis caused by molecular ions (e.g. 208Pb16O +2 or 238U1H+) by employing suitable matrix separation prior to ICP-SFMS analysis of the desolvated sample. Isotopes with alpha energies similar to the analytes that may cause interferences in alpha spectrometric analysis were also separated. For 239Pu, 240Pu, 241Pu and 241Am detection limits of 15, 9.2, 14 and 23 fg g−1, respectively were achieved by ICP-SFMS, and 0.1 mBq obtained by alpha spectrometry. The methods developed are especially applicable for monitoring purposes of anthropogenic transuranium elements, as the analysis (sample preparation and ICP-SFMS measurement) can be carried out within 6 hours for one batch of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto M., Tsumura A., Katayama Y., and Tsukatani, T.: Radiochim. Acta 72 (1996) 209.

    Google Scholar 

  2. Aarkrog A. et al.: Sci. Total Environ. 201 (1997) 137.

    Article  Google Scholar 

  3. Agarande M., Benzoubir S., Neiva-Marques A. M., and Bouisset P.: J. Environ. Radioact. 72 (2004) 169.

    Article  Google Scholar 

  4. Solatie D., Carbol P., Hrnecek E., Jaakkola T., and Betti M.: Radiochim. Acta 90 (2002) 447.

    Article  Google Scholar 

  5. Becker J. S.: Int. J. Mass Spectrom. 242 (2005) 183.

    Article  Google Scholar 

  6. Hrnecek E., Steier P., and Wallner A.: Appl. Radiat. Isot. 63 (2005) 633.

    Article  Google Scholar 

  7. Wyse E. J., Lee S. H., La Rosa J., Povinec P. P., and de Mora S. J.: J. Anal. At. Spectrom. 16 (2001) 1107.

    Article  Google Scholar 

  8. Lee S. H., La Rosa J., Gastaud J., and Povinec P. P.: J. Radioanal. Nucl. Chem. 263 (2005) 419.

    Google Scholar 

  9. Ayranov M., Krahenbuhl U., Sahli H., Rollin S., and Burger M.: Radiochim. Acta 93 (2005) 249.

    Article  Google Scholar 

  10. Horwitz E. P. et al.: Anal. Chim. Acta 310 (1995) 63.

    Article  Google Scholar 

  11. Thakkar A. H.: J. Radioanal. Nucl. Chem. 248 (2001) 453.

    Article  Google Scholar 

  12. Currie L. A.: Anal. Chem. 40 (1968) 586.

    Article  Google Scholar 

  13. Povinec P. P.: J. Radioanal. Nucl. Chem. 263 (2005) 413.

    Google Scholar 

  14. Povinec, P. P., Pham, P. P.: Report on the intercomparison run IAEA-385 — Radionuclides in Irish Sea Sediment, IAEA, Monaco, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, Z., Surányi, G., Vajda, N. et al. Rapid methods for the determination of long-lived radionuclides in environmental samples by ICP-SFMS and radioanalytical techniques. Czech J Phys 56, D177–D182 (2006). https://doi.org/10.1007/s10582-006-1015-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-1015-4

Keywords

Navigation