Czechoslovak Journal of Physics

, Volume 56, Supplement 4, pp D159–D163 | Cite as

Determination of iodine in foodstuffs consumed in Libya using instrumental and radiochemical neutron activation analysis

  • A. M. Bejey
  • M. B. Alamin
  • J. Mizera
  • J. Kučera


Iodine was determined in foodstuffs consumed in Libya employing two modes of NAA. The first mode was instrumental using short-time irradiation with epithermal neutrons behind a Cd shield (EINAA). The other mode utilized short-time irradiation with the reactor-pile neutrons followed by radiochemical separation (RNAA). The radiochemical separation procedure was based on the alkaline-oxidative fusion of samples and extraction of elemental iodine into chloroform. Separation yield determined using the radiotracer 131I was within the range of 90 to 95 %. For quality control purposes, standard reference materials were analyzed in both modes employed. Using RNAA, a detection limit of ∼1 ng g−1 could be obtained indicating superiority of the method in measuring ultra-trace levels of iodine. On the other hand, more than one order of magnitude higher detection limit did not allow sufficiently accurate determination of iodine in Libyan foodstuffs using EINAA.


Neutron Activation Analysis Iodine Deficiency Epithermal Neutron Radiochemical Separation Radiochemical Neutron Activation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    U. S. Department of Agriculture nutrient database: http: // Scholar
  2. [2]
    WHO: Indicators for assessing iodine deficiency disorders and their control through salt iodization, Document WHO/NUT/94.6., Geneva, 1994.Google Scholar
  3. [3]
    Gaitan E. and Dunn J. T.: Trends Endocrinol. Metab. 3 (1992) 170.CrossRefGoogle Scholar
  4. [4]
    Kolonel L., Hankin J., Wilkens L., Fukunaga F., and Hinds M.: Cancer Causes Control 1 (1990) 223.CrossRefGoogle Scholar
  5. [5]
    Gelinas Y., Iyengar G. V., and Barnes B. M.: Fresenius J. Anal. Chem. 362 (1998) 483.CrossRefGoogle Scholar
  6. [6]
    Rao R. R., Holzbecher J., and Chat A.: Fresenius J. Anal. Chem. 352 (1995) 53.CrossRefGoogle Scholar
  7. [7]
    Rao R. R, Zhang W. H., Holzbecher J., and Chatt A.: Trans. Am. Nucl. Soc. 81 (1999) 21.Google Scholar
  8. [8]
    Kučera J., Iyengar G. V., Řanda Z., and Parr R.M.: J. Radioanal. Nucl. Chem. 259 (2004) 505.CrossRefGoogle Scholar
  9. [9]
    Kawamura H. et al.: J. Radioanal. Nucl. Chem. 245 (2000) 123.CrossRefGoogle Scholar
  10. [10]
    Dermelj M. et al.: Fresenius J. Anal. Chem. 338 (1990) 559.CrossRefGoogle Scholar
  11. [11]
    Andrási E., Bélavári C., Stibilj V., and Dermelj, M.: Anal. Bioanal. Chem. 378 (2004) 129.CrossRefGoogle Scholar
  12. [12]
    Firestone R. B. and Shirley V. S.: Table of Isotopes (8th edition), John Wiley & Sons, Inc., New York, 1996.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • A. M. Bejey
    • 1
  • M. B. Alamin
    • 1
  • J. Mizera
    • 2
  • J. Kučera
    • 2
  1. 1.Renewable Energy and Desalination Water Research CenterTripoliLibya
  2. 2.Nuclear Physics InstituteAcademy of Sciences of the Czech RepublicŘež near PragueCzech Republic

Personalised recommendations