Czechoslovak Journal of Physics

, Volume 56, Supplement 4, pp D119–D128 | Cite as

Sorption and diffusion behaviours of strontium in sodium-type bentonite bed

  • M. Tsukamoto
  • T. Fujita
  • T. Ohe


Sorption and diffusion of Sr were examined using a typical Japanese bentonite. The experimental results showed that Sr sorption on the bentonite had linear relationship between the equilibrium Sr concentration and Sr sorption amount, i.e., Henry’s type of sorption, in wide initial Sr concentration from 1.1 × 10−9 to 1.1 × 10−4 mol L−1 at pH 10. The Sr sorption also indicated pH dependence in pH range between 2 and 12. Sorption modelling calculation indicated that cation-exchange reactions contributed to Sr sorption in the pH range studied and a surface complexation reaction was predominant above pH 8. Diffusion of Sr in loosely compacted bentonite bed was described by pore and surface diffusion and surface complexation of Sr. Chemical-transport calculations reproduce the diffusion data at pH 5 using the cation-exchange parameters obtained in the analysis of the batch sorption experiment.


Bentonite Apparent Diffusion Coefficient Diffusion Experiment Compact Bentonite Batch Sorption Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    TRU Coordination Office: Progress Report on Disposal Concept for TRU Waste in Japan, JNC, FEPC, JNC TY1400 2000-002, TRU TR-2000-02 (2000).Google Scholar
  2. [2]
    JNC: Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan, JNC TN 1400 (2000).Google Scholar
  3. [3]
    Rafferty, P., et al.: J. Inorg. Nucl. Chem. 43 (1981) 797.CrossRefGoogle Scholar
  4. [4]
    Jensen, D. J. and Radke, C. J.: J. Soil. Sci. 39 (1988) 53.CrossRefGoogle Scholar
  5. [5]
    Grutter, A., et al.: Radiochim. Acta 64 (1994) 247.Google Scholar
  6. [6]
    Kahn, S. A., Rehman, Riaz-ur-and Kahn, M. Ali: Waste Manage 15 (1995) 641.CrossRefGoogle Scholar
  7. [7]
    Wanner, H., et al.: Radiochim. Acta 66/67 (1994) 733.ADSGoogle Scholar
  8. [8]
    Tsukamoto, M., Fujita, T. and Ohe, T.: J. Nucl. Mat. 248 (1997) 333.CrossRefADSGoogle Scholar
  9. [9]
    Huertas, F. J., et al.: Mat. Res. Soc. Symp. Proc. 663 (2001) 589.Google Scholar
  10. [10]
    Tsukamoto, M. and Ohe, T.: Czech. J. Phys. 53 (2003) A679.CrossRefGoogle Scholar
  11. [11]
    Tsukamoto, M., et al.: Radiochim. Acta 66/67 (1994) 397.Google Scholar
  12. [12]
    Yanagi, T, Watanabe, M. and Yamamoto, K.: J. Nucl. Sci. Technol. 26 (1989) 861.CrossRefGoogle Scholar
  13. [13]
    Bond, K. A., Heath, T. G. and Tweed, C. J., “HATCHES: A Referenced Thermodynamic Database for Chemical Equilibrium Studies”, Nirex Report NSS/R379 (1997).Google Scholar
  14. [14]
    Lehikoinen, J. et al.: Mat. Res. Soc. Symp. Proc. 412 (1996) 675.Google Scholar
  15. [15]
    Sato, H.: Mat. Res. Soc. Symp. Proc. 608 (2000) 267.Google Scholar
  16. [16]
    Robinson, R. A. and Stokes, R. H.: Electric Solutions, Butterworth, London, p. 454 (1955).Google Scholar
  17. [17]
    Ohe, T. and Tsukamoto, M.: Nucl. Technol. 118 (1997) 49.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • M. Tsukamoto
    • 1
  • T. Fujita
    • 1
  • T. Ohe
    • 2
  1. 1.Central Research Institute of Electric Power IndustryTokyoJapan
  2. 2.Energy Engineering CourseTokai UniversityKanagawaJapan

Personalised recommendations