Advertisement

Czechoslovak Journal of Physics

, Volume 56, Supplement 4, pp D111–D118 | Cite as

Modeling of cesium transport through sand-bentonite mixtures

  • L. Kraus
  • Z. Klika
  • D. Vopálka
Article
  • 35 Downloads

Abstract

The sorption and transport of Cs through mixture of Ca/Mg-bentonite and sand have been studied using five column experiments with different bentonite/sand ratio, initial Cs concentration and column height. For comparison the batch experiments with small m/V ratio and high Cs concentration were performed. The results showed that Cs removal from aqueous solution by bentonite is controlled by ion-exchange reaction between Cs and Ca/Mg initially sorbed on bentonite and that there is a consistency between the results obtained from batch equilibrium data and the results obtained from column experiments verified in the environment of PHREEQC.

Keywords

Bentonite Column Experiment Thermodynamic Equilibrium Constant Retardation Coefficient Code PHREEQC 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Miyahara B., Ashida T., Kohara Y., Yusa Y., and Sasaki N.: Radiochimica Acta 52/53 (1991) 293.Google Scholar
  2. [2]
    Oscarson D. W., Hume H. B., and King F.: Clays and Clay Minerals 42 (1994) 731.CrossRefGoogle Scholar
  3. [3]
    Khan S. A., Riaz-ur Rehman, and Khan M. A.: Waste Management 14 (1994) 629.CrossRefGoogle Scholar
  4. [4]
    Tsai S. Ch., Quyang S., and Hsu Ch. N.: Applied Radiation and Isotopes 54 (2001) 209.CrossRefGoogle Scholar
  5. [5]
    von Gunten H. R., Waber U. E. and Krahenbûhl U.: J. Contam. Hydrol. 3 (1988) 237.CrossRefGoogle Scholar
  6. [6]
    Aharoni C., Pasricha N. S., and Sparks D. L.: Soil Sci. 156 (1992) 233.CrossRefGoogle Scholar
  7. [7]
    Vieno T.: Safety analysis of disposal of spent nuclear fuel. VTT Publications 177, Espoo 1994, 256 pp.Google Scholar
  8. [8]
    Smith J. T. and Comans R. N. J.: Geoch. Cosmoch. Acta 60 (1996) 995.CrossRefADSGoogle Scholar
  9. [9]
    Parkhurst D. L. and Appelo C. A. J.: User’s guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259, U.S. Geological Survey, Denver 1999, 312 pp.Google Scholar
  10. [10]
    Kozaki T., Sato H., Sato S., and Ohashi H.: Engineering Geology 54 (1999) 223.CrossRefGoogle Scholar
  11. [11]
    Beigel C. and Di Pietro L.: Soil Sci. Soc. Am. J. 63 (1999) 1177.CrossRefGoogle Scholar
  12. [12]
    Jochová M., Punčochář M., Horáček J., Štamberg K., and Vopálka D.: Fuel 83 (2004) 1197.CrossRefGoogle Scholar
  13. [13]
    Gaines G. L. and Thomas H. C.: Journal of Chemical Physics 21 (1953) 714.CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • L. Kraus
    • 1
  • Z. Klika
    • 1
  • D. Vopálka
    • 2
  1. 1.Department of Analytical Chemistry and Material TestingVŠB-Technical University OstravaOstrava-PorubaCzech Republic
  2. 2.Department of Nuclear ChemistryCzech Technical University in PraguePrague 1Czech Republic

Personalised recommendations