Czechoslovak Journal of Physics

, Volume 56, Supplement 4, pp D103–D110 | Cite as

Retention of cesium, plutonium and americium by engineered and natural barriers

  • G. Lujaniene
  • J. Šapolaite
  • A. Amulevičius
  • K. Mažeika
  • S. Motiejunas


Safety assessment of low and intermediate level waste repository requires sorption parameters and understanding of the radionuclides sorption-desorption mechanism. In order to obtain realistic sorption data for safety relevant radionuclides present in cement (concrete) based near surface repository, some preliminary studies have been carried out. Batch sorption experiments were conducted with two clay samples to determine Kd values of Cs, Pu and Am under a wide range of geochemical conditions. Cs, Pu and Am Kd values were determined for rainwater, groundwater and cement-water of different chemical compositions. Cs, Pu, Am Kd values ranged from 450 to 9700, from 15000 to 21000 and from 15000 to 80000 ml/g, respectively. Iron speciation was determined using Mössbauer spectrometry.


Cesium Plutonium Goethite Sequential Extraction Maghemite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Onodera Y. et al.: Journal of Contaminant Hydrology 35 (1998) 131.CrossRefGoogle Scholar
  2. [2]
    Bostick B.C. et al.: Environ. Sci. Technol. 36 (2002) 2670.CrossRefGoogle Scholar
  3. [3]
    Katz J. J., Seaborg G. T. and Morss L. R. (Eds.): The chemistry of actinides, Moscow, 1997 pp. 823 (in Russian).Google Scholar
  4. [4]
    Chopin G. R.: J. Nucl. Radiochem. Sci. 6(1) (2005) 1.Google Scholar
  5. [5]
    Stumm W.: In: Chemistry of Solid-Water Interface, New York: Wiley, 1992, pp. 323.Google Scholar
  6. [6]
    United States Office of Air and Radiation EPA Report 402-R-99-004A Understanding variation in partition coefficients, Kd values, 1999, pp. 450.Google Scholar
  7. [7]
    Characterization of Materials Suitable for Engineering Barriers of Near Surface Repository of Radioactive Waste, Ecofirma, 2004 (in Lithuanian).Google Scholar
  8. [8]
    Berthard P. A. and Choppin G. R.: Radiochim. Acta 31 (1985) 115.Google Scholar
  9. [9]
    Lujaniene G. et al.: Lithuanian Journal of Physics 45, 4 (2005) 273.Google Scholar
  10. [10]
    Sahuquillo A., Rigol A. and Rauret G.: Trends in Anal. Chem. 22 (2003) 152.CrossRefGoogle Scholar
  11. [11]
    G. Rauret et al.: J. Environ. Monitor. 1 (1999) 57–61.CrossRefGoogle Scholar
  12. [12]
    Curti E: Appl. Geochim. 14 (1999) 433.CrossRefGoogle Scholar
  13. [13]
    Zavarin M. et al.: Radiochim. Acta 93 (2005) 93.CrossRefGoogle Scholar
  14. [14]
    Shanbhag P.M., Morse J.W.: Geochim. Cosmochim. Acta 46 (1982) 241.CrossRefADSGoogle Scholar
  15. [15]
    Hiemstra T. and Van Riemsdijk W. H.: Colloids and Surfaces 59 (1991) 7.CrossRefGoogle Scholar
  16. [16]
    Hiemstra T., De Wit C.M. and VanRiemsdijk W.H.: J. Colloid Interface Sci. 133 (1989) 105.CrossRefGoogle Scholar
  17. [17]
    Sanchez A.L., Murray J.W., and Sibley T.H.: Geochim. et Cosmochim. Acta 49 (1985) 2297.CrossRefADSGoogle Scholar
  18. [18]
    Fujita T. and Tsukamoto M.: Mat. Res. Soc. Symp. Proc. 465 (1997) 781.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • G. Lujaniene
    • 1
  • J. Šapolaite
    • 1
  • A. Amulevičius
    • 1
  • K. Mažeika
    • 1
  • S. Motiejunas
    • 2
  1. 1.Institute of PhysicsVilniusLithuania
  2. 2.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations