Czechoslovak Journal of Physics

, Volume 56, Supplement 4, pp D87–D94 | Cite as

Numerical modelling of radionuclide transport through a water saturated rock massif

  • J. Šembera
  • J. Královcová
  • O. Severýn
  • M. Vohralík


The paper deals with the introduction to combined schemes for numerical modelling of water transport of radionuclides through a rock massif modelled as a system of fractures. Inside the fracture system, Darcy flow of water is supposed. The combined schemes for solution of convective-reactive-diffusive transport of radionuclides with sorption and radioactive decay in the fracture flow field are mentioned and referenced and results of numerical computations are presented.


Rock Massif Fracture Network Fracture System Contaminant Transport Combine Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Bear J.: Modelling Flow and Contaminant Transport in Fractured Rocks, USA: Academic Press, Inc., 1993.Google Scholar
  2. [2]
    Wanfang Z., Wheater H.S., and Johnston P.M.: Envir. Geol. 31 (1997) 157.CrossRefGoogle Scholar
  3. [3]
    Characterization and Evaluation of Sites for Deep Geological Disposal of Radioactive Waste in Fractured Rocks — Proceedings from the 3rd International Seminar, Oskarshamn, June 10–12, SKB Technical Report 98-10, Stockholm, 1998.Google Scholar
  4. [4]
    Cacas M.C., Ledoux E., and De Marsily G.: Water Resources Research 26, no. 3 (1990) 479.CrossRefADSGoogle Scholar
  5. [5]
    Vohralík, M.: Generating Fracture Networks Based on the Core Log Evaluation of Borehole PTP-3 in Krušné Hory Mountains, Tech.Rep., FNSPE CTU in Prague, 2001.Google Scholar
  6. [6]
    Vohralík, M.: Mixed-hybrid Model of the Fracture Flow, Dipl. Thesis, FNSPE CTU in Prague, 2000.Google Scholar
  7. [7]
    Maryška J., Severýn O., and Vohralík M.: Compt. Geosci. 8/3 (2004) 217.Google Scholar
  8. [8]
    Vohralík, M.: Numerical Methods for Nonlinear Elliptic and Parabolic Equations: Application to flow problems in porous and fractured media, Ph.D. Thesis, Czech Technical University in Prague & University Paris XI, 2004.Google Scholar
  9. [9]
    Kaasschieter E.F. and Huijben A.J.M.: Numerical Methods for Partial Differential Equations 8 (1992) 221.CrossRefMathSciNetGoogle Scholar
  10. [10]
    Maryška J., Severýn O., and Vohralík M.: in EQUADIFF 10 CD ROM Papers, Praha 2001 (Eds. Kuben J. and Vosmanský J.), Masaryk University Publishing House Brno, 2002, p. 297.Google Scholar
  11. [11]
    Maryška J., Severýn O., and Vohralík M.: In: Proceedings of Computational Science — ICCS 2002 (Eds. P. M. A. Sloot et al.), Springer-Verlag, Amsterdam, p.794.Google Scholar
  12. [12]
    Maryška J. and Severýn O.: In: Proceedings of Simona 2003 Workshop, Liberec 2003 (Eds. Šembera J. and Hokr M.), Technical University of Liberec, 2003, p. 77.Google Scholar
  13. [13]
    Maryška J., Rozložník M., and Tůma M.: SIAM J. Sci. Comput. 22 (2000) 704.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Eymard R., Gallouët T., and Herbin R.: In: Handbook of Numerical Analysis vol. 7 (Eds. Ciarlet P.G., Lions J.L.), Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 2000, p. 715.Google Scholar
  15. [15]
    Eymard R., Gallouët T., Herbin R., and Michel A.: Numer. Math. 92 (2002) 41.CrossRefMathSciNetGoogle Scholar
  16. [16]
    Feistauer M., Felcman J., and Medvid’iová-Lukácová M.: Num. Methods for Part. Diff. Eqs. 13 (1997) 1.CrossRefGoogle Scholar
  17. [17]
    Angot A., Dolejší V., Feistauer M., and Felcman J.: Appl. Math. Praha 43,no. 4 (1998) 263.CrossRefGoogle Scholar
  18. [18]
    Eymard R., Hilhorst D., and Vohralík M.: Combined Finite Volume-Nonconforming/Mixed-hybrid Finite Element Scheme for Degenerate Parabolic Problems, to be published in Numer. Math.Google Scholar
  19. [19]
    Maryška J. et al.: In: Proceedings of EUROCK 2005: Impact of Human Activity on the Geological Environment, Brno 2005 (Ed. Konečný P.), A. A. Balkema Publishers, Leiden, 1995, p. 373.Google Scholar
  20. [20]
    Maros G. et al.: Core Log Evaluation of Borehole Ptp-3 in the Krušné hory Mts, Tech. Rep., MS Geological Institute of Hungary, Budapest, 2001.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • J. Šembera
    • 1
  • J. Královcová
    • 1
  • O. Severýn
    • 1
  • M. Vohralík
    • 1
  1. 1.Advanced Remediation Technologies and Processes CenterTechnical University of LiberecLiberecCzech Republic

Personalised recommendations