Skip to main content
Log in

Progress in neutron diagnostics at JET

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

In the ITER tokamak, diagnosing the plasma neutron emission will be essential to characterise fusion burning process and determine the performance of the machine. JET, currently the world largest tokamak, is the most suitable test bed for development of the fusion-relevant neutron diagnostics due to its plasma parameters and unique tritium operation capability. Current works aim at improving the spatial and spectral characteristics of the neutron measurements at JET, as well as on technological tasks. The present enhancements of neutron diagnostics and data analyses at JET make-together with new fast particle measuring techniques and tritium retention studies-part of the “burning plasma” diagnostic developments towards reactor-grade fusion facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pamela, J. Ongena and JET EFDA contributors: Overview of JET results. Nuclear fusion 45 (2005) S63.

    Article  ADS  Google Scholar 

  2. J. Mlynar, J. Ongena et al.: JET: Preparing the future in fusion. Czechoslovak Journal of Physics 54 (2004) C28.

    Article  Google Scholar 

  3. A. Murari et al: “Burning plasma” diagnostics for the physics of JET and ITER. Plasma physics and controlled fusion 47 (2005) B249.

    Article  Google Scholar 

  4. G. Bonheure et al.: Neutron diagnostics for reactor scale fusion experiments. International Workshop on Fast Neutrons Detectors and Applications FNDA 2006, Cape Town, Proceedings of Science PoS(FNDA2006) RE02

  5. M. T. Swinhoe and O. N. Jarvis: Calculation and measurement of 235 U and 238 U fission counter assembly detection efficiency. Nuclear instruments and methods 221 (1981) 460.

    Google Scholar 

  6. S. Conroy et al.: Time resolved measurement of triton burnup in JET experiments. Nuclear fusion 28 (1988) 2127.

    Google Scholar 

  7. A. V. Krasilnikov et al.: Study of D-T neutron energy spectra at JET using natural diamond detectors. Nuclear instruments and methods A476 (2002) 500.

    ADS  Google Scholar 

  8. M. Angelone et al.: Time dependent 14 MeV neutrons measurement using a poly-crystalline chemical vapor deposited diamond detector at the JET tokamak. Review of Scientific Instruments 76 (2005) 013506.

  9. O. N. Jarvis et al.: Neutron profile measurements in the Joint European Torus. Fusion Engineering and Design 34–35 (1997) 59.

    Article  Google Scholar 

  10. B. Esposito et al.: Digital pulse shape discrimination in organic scintillators for fusion applications. Nuclear Instruments and Methods 518 (2004) 626.

    Article  Google Scholar 

  11. M. Anton et al.: X-ray tomography on the TCV tokamak. Plasma physics and controlled fusion 38 (1996) 1849.

    Article  ADS  Google Scholar 

  12. G. Bonheure et al.: 2-D spatial distribution of D-D and D-T neutron emission in JET ELMy H-mode plasmas with Tritium puff. 32nd EPS Conference on Controlled Fusion and Plasma Physics, Tarragona, Spain, Europhysics Conference Abstracts 29C (2005) P-1.083.

  13. B. Esposito, L. Bertalot, M. Loughlin and A. L. Roquemore: Neutron spectrum measurements in DT discharges using activation techniques. Review of Scientific Instruments 70 (1999) 1130.

    Article  ADS  Google Scholar 

  14. A. Hjalmarsson et al.: The TOFOR spectrometer for 2.5 MeV neutron measurements at JET. Review of Scientific Instruments 74 (2003) 1750.

    Article  ADS  Google Scholar 

  15. J. Kallne and H. Enge: Magnetic proton recoil spectrometer for fusion plasma neutrons. Nuclear Instruments and Methods 311 (1992) 595.

    Article  Google Scholar 

  16. A. Zimbal et al.: Compact NE213 neutron spectrometer with high energy resolution for fusion applications. Review of Scientific Instruments 75 (2004) 3553.

    Article  ADS  Google Scholar 

  17. J. Mlynar, J. M. Adams, L. Bertalot, S. Conroy et al.: First Results of Minimum Fisher Regularisation as Unfolding Method for JET NE213 Liquid Scintillator Neutron Spectrometry. Fusion Engineering and Design 74 (2005) 781.

    Article  Google Scholar 

  18. M. Reginatto, P. Goldhagen and S. Neumann: Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED. Nuclear Instruments and Methods A476 (2002) 242.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

EFDA JET Contributors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mlynář, J., Bonheure, G., Murari, A. et al. Progress in neutron diagnostics at JET. Czech J Phys 56 (Suppl 2), B118–B124 (2006). https://doi.org/10.1007/s10582-006-0187-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-0187-2

Key words

Navigation