Skip to main content
Log in

UV degradability of polysilanes for nanoresists examined by electron spectroscopies and photoluminescence

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The aim of this study was to elucidate the degradation mechanisms in polysilanes, especially one-dimensional polysilylenes, with respect to the search for suitable resists for silicon industrial nanotechnologies. To this end we used the combined methods of photoelectron spectroscopies — PES (UPS and XPS) and photoluminescence — PL. Films of aryl-methyl-substituted polysilane chain, poly[methyl(phenyl)silylene] (PMPSi), prepared by casting from benzene solution, were analysed by X-ray and UV-induced photoelectron spectroscopy. Photoelectron spectra were recorded from the pristine PMPSi surface and after the UV photodegradation. Pronounced changes were found in the HeI induced photoelectron spectra indicating redistribution of filled Si 3s-like and Si 3p-like states. The photodegradation by UV radiation for two different degradation wavelengths λ = 266 and 355 nm was examined also by PL. We concentrated on the PL study in the region of the σ*-σ excitonic deexcitation after major degradations, studying the disorder and dangling bonds (DB) created by the degradation process. The results of both complementary methods are interpreted in accordance with our recent paper [1], with the degradation process explained by two competing phenomena, i.e. the energy dependent exciton transport by diffusion process and Si-Si bond scission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Schauer, I. Kuritka, and S. Nespurek: Polym. Degrad. Stabil. 84 (2004) 383.

    Google Scholar 

  2. N. Matsumoto: Jpn. J. Appl. Phys. 37 (1998) 5425.

    Google Scholar 

  3. F. Schauer, I. Kuritka, N. Dokoupil, and P. Horvath: Physica E 14 (2002) 272.

    Article  ADS  Google Scholar 

  4. K. Matyjaczewski, E. Fossum, and P. Miller: in The Polymeric Materials Encyclopaedia (Ed. J.C. Salamone), CRC Press, Boca Raton, 1996, 9, p. 6741.

    Google Scholar 

  5. S. Nespurek, W. Herden, W. Schnabel, and A. Eckhardt: Czech J. Phys. 48 (1998) 497.

    Google Scholar 

  6. S. Hayase: Chemtech 24 (1994) 19.

    Google Scholar 

  7. S. Hayase: Prog. Polym. Sci. 28 (2003) 359.

    Article  Google Scholar 

  8. S. Hayase, Y. Nakano, S. Yoshikawa, H. Ohta, Y. Sato, E. Shiobara, S. Miyoshi, Y. Onishi, M. Abe, H. Matsuyama, and Y. Ohiwa: Chem. Mater. 13 (2001) 2186.

    Google Scholar 

  9. K. Maeda, S. Seki, S. Tagawa, and H. Shibate: Rad. Phys. Chem. 60 (2001) 461.

    Article  ADS  Google Scholar 

  10. S. Seki, Y. Sakurai, K. Maeda, Y. Kunimi, and S. Tagawa: Jpn. J. Appl. Phys. 39 (2000) 4225.

    Article  Google Scholar 

  11. K. Navratil, J. Sik, J. Humliek, S. Nespurek: Opt. Mater. 12 (1999) 105.

    Article  Google Scholar 

  12. H.K. Kim and K. Matyjaszewski: J. Polym. Sci. A: Polym. Chem. 31 (1993) 299.

    Google Scholar 

  13. S. Seki, Y. Yoshida, S. Tagawa, and K. Asai: Macromolecules 32 (1999) 1080.

    Google Scholar 

  14. K. Takeda, K. Shiraishi, M. Fujiki, M. Kondo, and M. Morigaki: Phys. Rev. B 50 (1994) 5171.

    ADS  Google Scholar 

  15. F. Schauer, R. Handlir, and S. Nespurek: Adv. Mater. Opt. Electron. 7 (1997) 61.

    Article  Google Scholar 

  16. H. Naito, S. Zhang, M. Okuda, and T. Dohmaru: J. Appl. Phys. 76 (1994) 3612.

    Article  ADS  Google Scholar 

  17. R. Handlir, F. Schauer, S. Nespurek, I. Kuritka, M. Weiter, and P. Schauer: J. Non-Cryst. Solids. 227–230 (1998) 669.

    Google Scholar 

  18. D.L. Staebler and C.R. Wronski: Appl. Phys. Lett. 31 (1977) 292.

    Article  ADS  Google Scholar 

  19. A. Kadashchuk, N. Ostapeno, V. Zaika, and S. Nespurek: Chem. Phys. 234 (1998) 285.

    Article  Google Scholar 

  20. A. Kadashchuk, S. Nespurek, N. Ostapenko, Yu. Skryshevskii, and V. Zaika: Mol. Cryst. Liq. Cryst. 355 (2001) 413.

    Google Scholar 

  21. Yu. Skryshevskii, N. Ostapenko, A. Kadashchuk, A. Vakhnin, and S. Suto: Mol. Cryst. Liq. Cryst. 361 (2001) 37.

    Google Scholar 

  22. Y. Takeda, S. Hyodo, N. Suzuki, T. Motohiro, T. Hioki, and S. Noda: J. Appl. Phys. 73 (1993) 1924.

    Article  ADS  Google Scholar 

  23. A. Kobayashi, H. Naito, Y. Matsuura, K. Matsukawa, S. Nihonyanagi, and Y. Kanemitsu: J. Non-Cryst. Solids. 299–302 (2002) 1052.

    Google Scholar 

  24. P. Horvath, F. Schauer, O. Salyk, I. Kuritka, S. Nespurek, J. Zemek, and V. Fidler: J. Non-Cryst. Solids. 266–269 (2000) 989.

    Google Scholar 

  25. R.A. Street: Hydrogenated amorphous silicon, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  26. B.G. Budaguan, A.A. Aivazov, M.N. Meytin, A.Yu. Sazonov, and J.W. Metselaar: Physica B: Condensed Matter 252 (1998) 198.

    Article  ADS  Google Scholar 

  27. T.J. McMahon: Solar Cells 30 (1991) 235.

    Article  Google Scholar 

  28. W.R. Salaneck, R. Bergman, J.-E. Sundgren, A. Rockett, T. Motooka, and J.E. Greene: Surf. Sci. 198 (1998) 461.

    Google Scholar 

  29. C.S. Fadley: in Electron Spectroscopy: Theory, Techniques and Applications, (Eds. C.R. Brundle and A.D. Baker), Academic, London, 1978.

    Google Scholar 

  30. G. Beamson and D. Briggs: High Resolution XPS of Organic Polymers, The Scienta ESCA 300 Database. John Wiley & Sons, Chichester, 1992.

    Google Scholar 

  31. K. Takeda, K. Shiraishi, M. Fujiki, M. Kondo, and M. Morigaki: Phys. Rev. B 50 (1994) 5171.

    ADS  Google Scholar 

  32. N. Ostapenko, G. Telbiz, V. Ilyin, S. Suto, and A. Watanabe: Chem. Phys. Lett. 383 (2004) 456.

    Article  Google Scholar 

  33. Y. Nakayama, H. Inagi, and M. Zhang: J. Appl. Phys. 86 (1999) 768.

    Article  ADS  Google Scholar 

  34. F. Yonezawa and M.H. Cohen: in Theory of Electronic Properties of Amorphous Semiconductors (Ed. F. Yonezawa), Fundamental Physics of Amorphous Semiconductors. Springer Verlag, Berlin, 1981, p. 119.

    Google Scholar 

  35. T. Kanai, S. Furukawa, Y. Maeda, Y. Hayashi, K. Oka, T. Dohmaru, and R. West: J. Phys. Cond. Matter. 10 (1998) 883.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuritka, I., Schauer, F., Saha, P. et al. UV degradability of polysilanes for nanoresists examined by electron spectroscopies and photoluminescence. Czech J Phys 56, 41–50 (2006). https://doi.org/10.1007/s10582-006-0064-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-0064-z

Key words

Navigation