Advertisement

Czechoslovak Journal of Physics

, Volume 55, Issue 11, pp 1447–1453 | Cite as

Lagrangian fractional mechanics — a noncommutative approach

  • Malgorzata Klimek
Article

Abstract

The extension of coordinate-velocity space with noncommutative algebra structure is proposed. For action of fractional mechanics considered on such a space the respective Euler-Lagrange equations are derived via minimum action principle. It appears that equations of motion in the noncommutative framework do not mix left and right derivatives thus being simple to solve at least in the linear case. As an example, two models of oscillator with fractional derivatives are studied.

Key words

fractional derivative fractional mechanics Euler-Lagrange equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.G. Samko, A.A. Kilbas and O.I. Marichev: Fractional Integrals and Derivatives. Gordon & Breach, Amsterdam, 1993.Google Scholar
  2. [2]
    R. Hilfer, ed.: Applications of fractional calculus in physics. World Scientific, Singapore, 2000.Google Scholar
  3. [3]
    R. Metzler: Phys. Rev. E 62 (2000) 6233.MathSciNetADSGoogle Scholar
  4. [4]
    R. Metzler and J. Klafter: J. Phys. Chem. B 104 (2000) 3851.Google Scholar
  5. [5]
    R. Metzler and J. Klafter: Phys. Rep. 339 (2000) 1.CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    F. Riewe: Phys. Rev. E 53 (1996) 1890; 55 (1997) 3581.CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    M. Klimek: Czech. J. Phys. 51 (2001) 1348; 52 (2002) 1247.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    P. Zavada: Commun. Math. Phys. 192 (1998) 261; hep-th/0003126.MathSciNetzbMATHADSGoogle Scholar
  9. [9]
    N. Laskin: Phys. Lett. A 268 (2000) 298; Phys. Rev. E 66 (2002) 056108; quant-ph/0504106.CrossRefMathSciNetzbMATHADSGoogle Scholar
  10. [10]
    M. Klimek: in preparation.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • Malgorzata Klimek
    • 1
  1. 1.Institute of Mathematics and Computer ScienceTechnical University of CzestochowaCzestochowaPoland

Personalised recommendations