Skip to main content
Log in

Brittle-ductile behavior in 3D iron crystals

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

We present large scale molecular dynamic (MD) simulations in bcc iron containing a relatively long Griffith crack loaded in mode I at a temperature of K and 300 K. We use N-body potentials of Finnis-Sinclair type. The paper also includes a stress analysis performed in the framework of anisotropic fracture mechanics and on the atomic level as well. It enables us to understand why at 0 K brittle fracture in MD is detected, while at 300 K ductile behavior at the crack front in MD is monitored, starting from the free sample surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Rice: J. Mech. Phys. 40 (1992) 239.

    Article  ADS  Google Scholar 

  2. G.E. Beltz and L.L. Fisher: Multiscale Deformation and Fracture in Materials and Structures. Kluwer, Boston, 2001, p. 237.

    Google Scholar 

  3. A.S. Argon, G. Xu, and M. Ortiz: Fracture-Instability, Dynamics, Scaling, and Ductile/Brittle Behavior, Materials Research Society, Vol. 409, Pittsburgh, 1996, p. 29.

  4. M. Mullins and M.A. Dokainish: Philos. Mag. A 46 (1982) 771.

    ADS  Google Scholar 

  5. S. Kohlhoff, P. Gumbsh, and H. Fishmeister: Philos. Mag. A 64 (1991) 851.

    ADS  Google Scholar 

  6. V. Shastry and D. Farkas: Modelling Simul. Mater. Sci. (1996) 473.

  7. A. Machova, G.E. Beltz, and M. Chang: Modelling Simul. Mater. Sci. Eng. 7 (1999) 949.

    ADS  Google Scholar 

  8. G.E. Beltz and A. Machova: Scripta Materialia 50 (2004) 483.

    Article  Google Scholar 

  9. P.G. Marsch, W. Zielinski, H. Huang, and W. Gerberich: Acta Metall. Mater. 40 (1992) 2883.

    Google Scholar 

  10. T. Smida and J. Bosansky: Mater. Sci. Eng. A 287 (2000) 107.

    Google Scholar 

  11. A. Machova and G.J. Ackland: Modelling Simul. Mater. Sci. Eng. 6 (1998) 521.

    ADS  Google Scholar 

  12. G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry: Philos. Mag. A 75 (1997) 713.

    ADS  Google Scholar 

  13. A. Machova: Comput. Mater. Sci. 24 (2002) 535.

    Google Scholar 

  14. S.J. Zhou, D.M. Beazley, P.S. Lomdahl, A.F. Voter, and B.L. Hollian: in Advances in Fracture Research, Proc. ICF9, Sydney (Eds. B.L. Karihaloo et al.), Pergamon, New York, 1997, p. 3085.

    Google Scholar 

  15. J. Pokluda and P. Sandera: Metall. Mater. 33 (1995) 375.

    Google Scholar 

  16. G.J. Dienes and A. Paskin: J. Phys. Chem. Solids 48 (1987) 1015.

    ADS  Google Scholar 

  17. A. Machova and M. Landa: Res. Rep. Z1210/95, Inst. of Thermomechanics, Acad. Sci. CR, Prague, 1995.

    Google Scholar 

  18. H. Tada, P. Paris, and G. Irwin: The Stress Analysis Handbook. Hellertown Del Research Corporation, Hellertown, PA, 1973, D1–3.

    Google Scholar 

  19. A. Machova and A. Spielmannova: in Proc. Conf. “Computational Mechanics”, Castle Nectiny 2004, (Ed. Jan Vimmr), West Bohemia University, Plzen, 2004, p. 285.

    Google Scholar 

  20. Y. Murakami (ed.): Stress Intensity Factors Handbook, Vol. 1, Pergamon, Oxford, 1988, p. 67.

    Google Scholar 

  21. J.R. Rice: J. Mech. Phys. Solids 22 (1974) 17.

    ADS  Google Scholar 

  22. Y. Sun and G.E. Beltz: J. Mech. Phys. Solids 42 (1994) 1905.

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelikan, V., Hora, P., Machova, A. et al. Brittle-ductile behavior in 3D iron crystals. Czech J Phys 55, 1245–1260 (2005). https://doi.org/10.1007/s10582-005-0132-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-005-0132-9

Key words

Navigation