Skip to main content
Log in

Formulation of Hamiltonian Equations for Fractional Variational Problems

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

An extension of Riewe’s fractional Hamiltonian formulation is presented for fractional constrained systems. The conditions of consistency of the set of constraints with equations of motion are investigated. Three examples of fractional constrained systems are analyzed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Miller and B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley &Sons, Inc., New York, 1993.

    Google Scholar 

  2. S.G. Samko, A.A. Kilbas, and O.I. Marichev: Fractional Integrals and Derivatives — Theory and Applications, Gordon and Breach, Longhorne, PA, 1993.

    Google Scholar 

  3. K.B. Oldham and J. Spanier: The Fractional Calculus, Academic Press, New York, 1974.

    Google Scholar 

  4. R. Gorenflo and F. Mainardi: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continoum Mechanics, Springer Verlag, Wien-New York, 1997.

    Google Scholar 

  5. I. Podlubny: Fractional Differential Equations, Academic Press, New York, 1999.

    Google Scholar 

  6. R. Hilfer: Applications of Fraction Calculus in Physics, World Scientific Publishing Company, Singapore-New Jersey-London-Hong Kong, 2000.

    Google Scholar 

  7. J.A. Tenreiro Machado: Fract. Calc. Appl. Anal. 8 (2003) 73. J. A. Tenreiro Machado: Fract. Calc. Appl. Anal. 4 (2001) 47.

    Google Scholar 

  8. O.P. Agrawal: Trans. ASME, J. Vibrat. Acoust. 126 (2004) 561.

    Google Scholar 

  9. M. Klimek: Czech. J. Phys. 51 (2001) 1348.

    Article  Google Scholar 

  10. M. Klimek: Czech. J. Phys. 52 (2002) 1247.

    Article  Google Scholar 

  11. T.F. Nonnenmacher: J. Phys. A 23 (1990) L697S.

    Google Scholar 

  12. R. Metzler and K. Joseph: Physica A 278 (2000) 107.

    CAS  Google Scholar 

  13. G.M. Zaslavsky: Phys. Rep. 371 (2002) 461.

    Article  Google Scholar 

  14. F. Riewe: Phys. Rev. E 53 (1996) 1890.

    Article  CAS  Google Scholar 

  15. F. Riewe: Phys. Rev. E 55 (1997) 3581.

    Article  CAS  Google Scholar 

  16. E. Rabei, T.S. Alhalholy, and A. Rousan: Int. J. Mod. Phys. A 19 (2004) 3083.

    Article  MathSciNet  Google Scholar 

  17. E. Rabei, T.S. Alhalholy, and A.A. Taani: Turk. J. Phys. 28 (2004) 213.

    Google Scholar 

  18. O.P. Agrawal: J. Math. Appl. 272 (2002) 368.

    Article  Google Scholar 

  19. O.P. Agrawal: Trans. ASME, J. Appl. Mech. 68 (2001) 339.

    Google Scholar 

  20. O.P. Agrawal, J. Gregory, and K.P. Spector: J. Math. Ann. Appl. 210 (1997) 702.

    Article  Google Scholar 

  21. D. Baleanu and T. Avkar: Nuovo Cimento 119 (2004) 73.

    Google Scholar 

  22. D. Baleanu: in Proc. 1st IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France, July 19–21, 2004, (Eds. A. Le Mehante, J. A. Tenreiro Machado, J. C. Trigeasson, and J. Sabatier), p. 597.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of absence from Institute of Space Sciences, P.O.BOX MG-23, R 76900, Magurele–Bucharest, Romania

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muslih, S.I., Baleanu, D. Formulation of Hamiltonian Equations for Fractional Variational Problems. Czech J Phys 55, 633–642 (2005). https://doi.org/10.1007/s10582-005-0067-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-005-0067-1

Key words

Navigation