Skip to main content
Log in

Role of Mode-mode Coupling in Short-time Excited State Decay

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Master equation of a relevant electronic and vibrational system is derived for a special diabatic basis corresponding to vertical processes. It is shown that bath modes contribute dynamically to the inter-state coupling only at short times. For long times the bath-induced inter-state coupling is static and increases with the contribution of bath modes to the Stokes shift and to the Herzberg-Teller correction of the excited state. Simultaneously, the time evolution of excited state population is studied numerically for the system consisting of two electronic levels interacting with two vibrational modes, coupled to a heat bath. A mutual coupling of the vibrational modes in the excited state is taken into account (Duschinsky effect). Excited state population relaxes faster if interacting vibrational mode dissipates its energy via vibrational mode of a smaller eigenfrequency. Fast component of excited state depopulation cannot be achieved via coherent mode-mode coupling, if the second mode is not directly coupled to the electronic inter-state transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Rose, M.J. Rosker, and A.H. Zewail: J. Chem. Phys. 88 (1988) 6672.

    Article  CAS  Google Scholar 

  2. T. Cimei, A.R. Bizzarri, S. Cannistraro, G. Cerullo, and S. De Silvestri: Chem. Phys. Lett. 362 (2002) 497.

    Article  CAS  Google Scholar 

  3. S. Takeuchi and T. Tahara: Chem. Phys. Lett. 326 (2000) 430.

    Article  CAS  Google Scholar 

  4. M.C. Yoon, D.H. Jeong, S. Cho, D. Kim, H. Rhee, and T. Yoo: J. Chem. Phys. 118 (2003) 164.

    Article  CAS  Google Scholar 

  5. M. Heid, T. Chen, U. Schmitt, and W. Kiefer: Chem.Phys. Lett. 334 (2001) 119.

    Article  CAS  Google Scholar 

  6. M. Hayashi, T.S. Yang, C.H. Chang, K.K. Liang, R.L. Chang, and S.H. Lin: Int. J. Quantum Chem. 80 (2000) 1043.

    Article  CAS  Google Scholar 

  7. V. Novoderezhkin, R. Monshouwer, and R. van Grondelle: J. Phys. Chem. B 104 (2000) 12056.

    Article  CAS  Google Scholar 

  8. M. Halder, K. Das, P.K. Chowdbury, S. Kundu, M.S. Hargrove, and J.W. Petrich: J. Phys. Chem. B 107 (2003) 9933.

    Article  CAS  Google Scholar 

  9. F. Rosca, A.T.N. Kumar, D. Ionascu, T. Sjodin, A.A. Demidov, and P.M. Champion: J. Chem. Phys. 114 (2001) 10884.

    Article  CAS  Google Scholar 

  10. C. Kotting, E.W.G. Diau, T.I. Solling, and A.H. Zewail: J. Phys. Chem. A 106 (2002) 7530.

    Article  Google Scholar 

  11. C. Kotting, E.W.G. Diau, J.E. Baldwin, and A.H. Zewail: J. Phys. Chem. A 105 (2001) 1677.

    Article  Google Scholar 

  12. I.V. Rubtsov and K. Yoshihara: J. Phys. Chem. 103 (1999) 10202.

    CAS  Google Scholar 

  13. D. Egorova, M. Thoss, and W. Domcke: J. Chem. Phys. 119 (2003) 2761.

    Article  CAS  Google Scholar 

  14. U. Kleinekathofer, I. Kondov, and M. Schreiber: Chem. Phys. 268 (2001) 121.

    Article  CAS  Google Scholar 

  15. V. Bonacic-Koutecky, M. Hartmann, J. Pittner, and H. Van Dam: Int. J. Quantum Chem. 84 (2001) 714.

    Article  CAS  Google Scholar 

  16. F. Shuang, C. Yang, and Y.J. Yan: J. Chem. Phys. 114 (2001) 3868.

    Article  CAS  Google Scholar 

  17. L. Mulbacher and R. Egger: J. Chem. Phys. 118 (2003) 179.

    Article  Google Scholar 

  18. B. Wolfseder and W. Domcke: Chem. Phys. Lett. 235 (1995) 113.

    Article  Google Scholar 

  19. M. Mensik and S. Nespurek: Macromol. Symp. 212 (2004) 549.

    Article  CAS  Google Scholar 

  20. M. Mensik and S. Nespurek: Chem. Phys. 32 (2004) 279.

    Article  Google Scholar 

  21. M. Mensik and S. Nespurek: Czech. J. Phys. 52 (2002) 945.

    Article  Google Scholar 

  22. A. Raab, G.A. Worth, H-D. Meyer, and L. Cederbaum: J. Chem. Phys. 110 (1999) 936.

    Article  CAS  Google Scholar 

  23. A. Fulinski: Phys. Lett. A 25 (1967) 13.

    Article  Google Scholar 

  24. F. Sanda: Czech. J. Phys. 52 (2002) 63.

    Google Scholar 

  25. E. Geva, E. Rosenman, and D. Tannor: J. Chem. Phys. 113 (2000) 1380.

    Article  CAS  Google Scholar 

  26. V. Romero-Rochin and I. Oppenheim: Physica A 155 (1989) 52.

    Google Scholar 

  27. F. Sanda: J. Phys. A: Math. Gen. 35 (2002) 5815.

    Article  MathSciNet  Google Scholar 

  28. F. Sanda: Czech. J. Phys. 52 (2002) 729.

    Article  Google Scholar 

  29. O. Kuhn, V. May, and M. Schreiber: J. Chem. Phys 101 (1994) 10404.

    Article  Google Scholar 

  30. E.B. Davies: Math. Ann. 219 (1976) 147.

    Article  Google Scholar 

  31. M. Mensik and S. Nespurek: to be published.

  32. G.M. Sando, K.G. Spears, J.T. Hupp, and P.T. Ruhoff: J. Phys. Chem. A 105 (2001) 5317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Mensik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mensik, M., Nespurek, S. Role of Mode-mode Coupling in Short-time Excited State Decay. Czech J Phys 55, 579–592 (2005). https://doi.org/10.1007/s10582-005-0062-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-005-0062-6

Key words

Navigation