Skip to main content
Log in

The remarkable metrological history of 14C dating: From ancient Egyptian artifacts to particles of soot and grains of pollen

  • Session 2: Nuclear Analytical Methods
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Radiocarbon dating would not have been possible if 14C had not had the “wrong” half-life—a fact that delayed its discovery [1]. Following the discovery of this 5730 year radionuclide in laboratory experiments by Ruben and Kamen, it became clear to W. F. Libby that 14C should exist in nature, and that it could serve as a quantitative means for dating artifacts and events marking the history of civilization. The search for natural radiocarbon was a metrological challenge; the level in the living biosphere [ca. 230 Bq/kg] lay far beyond the then current state of the measurement art. This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 μg to 100 μg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that spawned new multidisciplinary areas of application, ranging from cosmic ray physics to oceanography to the reconstruction of environmental history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Libby, W.F.: “Nuclear dating: an historical perspective,” in Nuclear and Chemical Dating Techniques: Interpreting the Environmental Record (Ed. L.A. Currie), American Chemical Society Symposium Series No. 176, 1982, Ch 1.

  2. Libby, Willard F.: Radiocarbon Dating, Univ. Chicago Press, Chicago, 1952.

    Google Scholar 

  3. de Messičres, N.: “Libby and the interdisciplinary aspect of radiocarbon dating.” Radiocarbon 43 (2001) 1–5.

    Google Scholar 

  4. Libby W.F.: “Radiocarbon dating” [Nobel Lecture], Science 133 (1961) 621–629.

    Article  ADS  Google Scholar 

  5. Libby, W.F.: “Atmospheric Helium-3 and Radiocarbon from cosmic radiation,” Phys. Rev. 69 (1946) 671–672.

    Article  ADS  Google Scholar 

  6. Anderson, E.C., et al.: “Radiocarbon from cosmic radiation,” Science 105 (1947) 576. (See also MacKay, C., Pandow, M. and Wolfgang, R.: “On the chemistry of natural radiocarbon,” J. Geophys. Res. 68 (1963) 3929–3931, for an account of 14CO as the precurson or cosmogenic 14CO2.)

    Article  ADS  Google Scholar 

  7. Anderson, E.C. and Libby, W.F.: “World-wide distribution of natural radiocarbon,” Phys. Rev. 81 (1951) 64–69.

    Article  ADS  Google Scholar 

  8. Arnold, J.R. and Libby, W.F.: “Age determination by radiocarbon content: checks with samples of known age,” Science 110 (1949) 678–680.

    Article  ADS  Google Scholar 

  9. Karlén, I., Olsson, I., Kallberg, P., and Killici, S.: “Absolute determination of the activity of two 14C dating standards,” Ark. Geofys. 4 (1964) 465. (See also Ref. 12, p. 17: “The use of oxalic acid as a [radiocarbon dating] standard.”)

    Google Scholar 

  10. NIST Standard Reference Materials website: http://nist.gov/srm

  11. Rozanski, K., et al.: “The IAEA intercomparison exercise 1990,” Radiocarbon 34 (1992) 506–519.

    Google Scholar 

  12. Olsson, I.U., Ed.: Radiocarbon Variations and Absolute Chronology (12th Nobel Symposium), Almqvist & Wiksell, Stockholm, 1970.

    Google Scholar 

  13. Stuiver, M. and Kra, R., Eds.: Calibration Issue, Radiocarbon 28 (2B) 1986.; Stuiver, M., Long, A., and Kra, R., Eds.: Calibration 1993, Radiocarbon 35 (1) 1993, 191–199.

  14. Geyh, M. and Schlüchter, C.: “Calibration of the 14C time scale beyond 22,000 BP,” Radiocarbon 40 (1998) 475–482.

    Google Scholar 

  15. Eddy, J.: “The Maunder Minimum,” Science 192 (1976) 1189–1202.

    Article  ADS  Google Scholar 

  16. Mathews, S.: “What’s happening to our climate,” National Geographic 150 (1976) 176–615. (See especially pp 586, 614f.)

    Google Scholar 

  17. Lopes, J., Pinto, R., Almendra, M., and Machado, J.: “Variation of 14C activity in Portuguese wines from 1940 to 1974,” in Proc. Int. Conf. on Low-Radioactivity Measurements and Applications: The High Tatras, Czechoslovakia, 6–10 October 1975 (Eds. P. Povinec and S. Usačev), Comenius Univ., Bratislava 1977, pp 265–268.

    Google Scholar 

  18. Cain, W.F.: “14C in Modern American Trees,” in Radiocarbon Dating (Eds. R. Berger and H. Suess) Univ. California Press, Berkeley, 1979, pp 495–510.

    Google Scholar 

  19. Toggweiler, J.R., Dixon, K. and Bryan, K.: “Simulations of Radiocarbon in a Coarse-Resolution World Ocean Model, 2. Distributions of bomb-produced 14C,” J Geophys Res 94 [C6] (1989) 8243–8264. (See also: Levin, I. and Hesshaimer, V.: “Radiocarbon—a unique tracer of global carbon cycle dynamics,” Radiocarbon 42 (2000) 69–80.)

    Article  ADS  Google Scholar 

  20. Taylor, R.E., Long, A., and Kra, R., Eds.: Radiocarbon After Four Decades: An Interdisciplinary Perspective, Springer-Verlag, New York, 1992.

    Google Scholar 

  21. Stuiver, M. and Östlund, G.: “GEOSECS Atlantic Radiocarbon,” Radiocarbon 22 (1980) 1–24.

    Google Scholar 

  22. Sarmiento, J. and Gruber, N.: “Sinks for anthropogenic carbon,” Physics Today 55 [8] (2002) 30–36. (See also: Nydal, R.: “Radiocarbon in the Ocean,” Radiocarbon 42 (2000) 81–98.)

    Article  Google Scholar 

  23. McNichol, A.P., et al.: “Ten years after: The WOCE AMS radiocarbon program,” Nucl. Instrum. Meth. Phys. Res., B172 (2000) 479–484.

    Article  ADS  Google Scholar 

  24. Wild, E.M., et al.: “14C dating with the bomb peak: an application to forensic medicine,” Nucl. Instrum. Meth. Phys. Res., B172 (2000) 944–950.

    Article  ADS  Google Scholar 

  25. Currie, L., Klinedinst, D., Burch, R., Feltham, N. and Dorsch, R.: “Authentication and Dating of Biomass Components of Industrial Materials: Links to Sustainable Technology,” Nucl. Instrum. Meth. Phys. Res., B172 (2000) 281–287.

    Article  ADS  Google Scholar 

  26. Clayton, G., Arnold, J., and Patty, F.: “Determination of Sources of Particulate Atmospheric Carbon,” Science 122 (1955) 751–753.

    Article  ADS  Google Scholar 

  27. Lodge, J.P., Bien, G.S., and Suess, H.E.: “The Carbon-14 Content of Urban Airborne Particulate Matter,” Int. J. Air Pollut. 2 (1960) 309–312.

    Google Scholar 

  28. Maugh, T.H.: “Air pollution: where do hydrocarbons come from?” Science 189 (1975) 277f.

    Article  Google Scholar 

  29. Currie, L.A.: “Evolution and Multidisciplinary Frontiers of 14C Aerosol Science,” Radiocarbon 42 (2000) 115–126.

    Google Scholar 

  30. Stevens, R.K., et al.: “Mutagenic Atmospheric Aerosol Sources Apportioned by Receptor Modeling,” in ASTM Monograph STP 1052, Monitoring Methods for Toxics in the Atmosphere,” (Eds. W.L. Zielinski, Jr. and W.D. Dorko) Amer. Soc. Testing Mtls. (Philadephia, 1990) 187–196.

    Google Scholar 

  31. Klinedinst, D.B. and Currie, L.A.: “Direct Quantification of PM2.5 Fossil and Biomass Carbon within the Northern Front Range Air Quality Study’s Domain,” Environ. Sci. Technol. 33 (1999) 4146–4154.

    Article  Google Scholar 

  32. Klouda, G.A., et al.: “Biogenic contributions to atmospheric volatile organic compounds in Azusa, California,” J. Geophys. Res. 107 [D8] (2002) ACH 7-1 through 7-14.

    Google Scholar 

  33. Kuc, T. and Zimnoch, M.: “Changes of the CO2 sources and sinks in a polluted urban area (Southern Poland) over the last decade, derived from the carbon isotope composition,” Radiocarbon 40 (1998) 417–423.

    Google Scholar 

  34. Muller, R.A.: “Radioisotope dating with a cyclotron,” Science 196 (1977) 489–494.

    Article  Google Scholar 

  35. Nelson, D., Korteling, R., and Stott, W.: “Carbon-14: Direct detection at natural concentrations,” Science 198 (1977) 507–508.

    Article  Google Scholar 

  36. Bennett, C., et al.: “Radiocarbon dating using electrostatic accelerators: negative ions provide the key,” Science 198 (1977) 507–508.

    Article  Google Scholar 

  37. Wölfli, W.: “Advances in accelerator mass spectrometry,” Nucl. Instrum. Meth. Phys. Res. B 29 (1987) 1–13.

    Article  ADS  Google Scholar 

  38. Damon, P., et al.: “Radiocarbon dating of the Shroud of Turin,” Nature 337 (1989) 611–615. (See also the website: www.shroud.com/papers.htm for this article (…/nature.htm) and others contained in a large on-line collection of scientific articles treating various aspects of Shroud research.)

    Article  ADS  Google Scholar 

  39. British Broadcasting Corporation: Documentary, Shreds of Evidence (Timewatch series) 1988.

  40. Gove, H.: Relic, Icon, or Hoax? Carbon Dating the Turin Shroud, Institute of Physics Publishing, Bristol and Philadelphia, 1996.

    Google Scholar 

  41. Wilson, I.: “An appraisal of the mistakes made regarding the Shroud samples taken in 1988,” Proc. 3rd Intern. Conf. on the Shroud of Turin. Turin, June 1998. (www.shroud.com/wilson.htm).

  42. Articles examining non-contemporaneous organic contamination of textiles: Gove, H., Mattingly, S., David, A., and Garza-Valdes, L.: “A problematic source of organic contamination of linen,” Nucl. Instrum. Meth. Phys. Res. B123 (1997) 504–507

    Article  Google Scholar 

  43. Jull, A., Donahue, D., and Damon, P.: “Factors that affect the apparent radiocarbon age of textiles,” in Archaeological Chemistry (Ed. M. Orna) ACS symposium series 625, American Chemical Society, Washington DC 1996, Ch 19, pp 248–253.

    Google Scholar 

  44. Currie, L.A., et al.: “Low-level (submicromole) environmental 14C metrology,” Nucl. Instrum. Meth. Phys. Res., B172 (2000) 440–448.

    Article  ADS  Google Scholar 

  45. Klinedinst, D.B. and Currie, L.A.: “Radiocarbon blank correction: Methodologies and limitations in a major urban study of carbonaceous aerosols,” Nucl. Instrum. Meth. Phys. Res. B 172 (2000) 545–550.

    Article  ADS  Google Scholar 

  46. Currie, L.A., Eijgenhuijsen, E.M., and Klouda, G.A.: “On the validity of the Poisson Hypothesis for low-level counting; investigation of the distributional characteristics of background radiation with the NIST Individual Pulse Counting System,” Radiocarbon 40 (1998) 113–127.

    Google Scholar 

  47. Currie, L.A.: “Some case studies of skewed (and other ab-normal) data distributions arising in low-level environmental research,” Fresenius J. Anal. Chem. 370 (2001) 705–718.

    Article  Google Scholar 

  48. Danin, A. and Baruch, U.: “Floristic indicators for the origin of the Shroud of Turin,” Proc. 3rd Intern. Conf. on the Shroud of Turin. Turin, June 1998. (www.shroud.com/pdfs/daninx.pdf)

  49. Long, A., Davis, O., and de Lanois, J.: “Separation and 14C dating of pure pollen from lake sediments: nanofossil AMS dating,” Radiocarbon 34 (1992) 557–560.

    Google Scholar 

  50. Currie, L.A., et al.: “The pursuit of isotopic and molecular fire tracers in the polar atmosphere and cryosphere,” Radiocarbon 40 (1998) 381–390, 416f.

    Google Scholar 

  51. CARBOSOL: Present and retrospective state of organic vs inorganic aerosol over Europe: implications for climate (European Union; M. Legrand, coordinator) 2001. (See also: Weissenbök, R., et al.: “Accelerator Mass Spectrometry Analysis of Non-soluble Carbon in Aerosol Particles from High Alpine Snow (Mt. Sonnblick, Austria),” Radiocarbon 42 (2000) 285–294.)

    Google Scholar 

  52. Stafford, T.W., Jr., Hare, P.E., Currie, L.A., Jull, A.J.T., and Donahue, D.: “Accuracy of North American Human Skeleton Ages”, Quarternary Research, 34 (1990) 111–120.

    Article  Google Scholar 

  53. Reddy, C.M., et al.: “Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples,” Environ. Sci. Technol. 36 (2002) 1774–1782; Currie, L.A., Klouda, G.A., Benner, Jr., B.A., Garrity, K., and Eglinton, T.I., “Isotopic and Molecular Fractionation in Combustion; Three Routes to Molecular Marker Validation, including Direct Molecular ‘Dating’ (GC/AMS),” Atm. Environ. 33 (1999) 2789–2806.

    Article  Google Scholar 

  54. Eglinton, T.I., Aluwihare, L.I., Bauer, J.E., Druffel, E.R.M., and McNichol, A.P.: “Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating,” Anal. Chem. 68 (1996) 904–912.

    Article  Google Scholar 

  55. NIST SRM 1649a (Urban Dust) Certificate of Analysis, Jan. 2001. (http://nist.gov/srm).

  56. Hughey, B., et al.: “Low-energy biomedical GC-AMS system for 14C and 3H detection,” Nucl. Instrum. Meth. Phys. Res., B172 (2000) 40–46.

    Article  ADS  Google Scholar 

  57. Rowland, F.S., “Atmospheric Chemistry; Causes and Effects,” Marine Technology Society Journal 25 (1991) 12–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currie, L.A. The remarkable metrological history of 14C dating: From ancient Egyptian artifacts to particles of soot and grains of pollen. Czech J Phys 53 (Suppl 1), A137–A160 (2003). https://doi.org/10.1007/s10582-003-0020-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-003-0020-0

Keywords

Navigation