Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., & Soroa, A. (2009). A study on similarity and relatedness using distributional and wordnet-based approaches. In Proceedings of human language technologies: The 2009 annual conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, Stroudsburg, PA, USA, NAACL ’09, pp. 19–27.
Al-Rfou, R., Perozzi, B., & Skiena, S. (2013). Polyglot: Distributed word representations for multilingual NLP. In Proceedings of the seventeenth conference on computational natural language learning, Sofia, Bulgaria, pp. 183 – 192.
Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3, 1137–1155.
Google Scholar
Boyd-Graber, J., Fellbaum, C., Osherson, D., & Schapire, R. (2006). Adding dense, weighted, connections to WordNet. In Proceedings of the global WordNet conference, Jeju, South Korea, pp. 29 – 36.
Budanitsky, A. (1999). Lexical semantic relatedness and its application in natural language processing. Tech. Rep. CSRG-390, Department of Computer Science, University of Toronto, Toronto, Canada.
Budanitsky, A., & Hirst, G. (2006). Evaluating wordnet-based measures of lexical semantic relatedness. Computational Linguistics, 32(1), 13–47.
Google Scholar
Collobert R., & Weston J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In International conference on machine learning, ICML.
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. P. (2011). Natural language processing (almost) from scratch. CoRR. arXiv:1103.0398.
Estes, Z., Golonka, S., & Jones, L. L. (2011). Thematic thinking: The apprehension and consequences of thematic relations. Psychology of Learning and Motivation: Advances in Research and Theory, 54, 249–294.
Google Scholar
Faruqui M., Dyer C. (2015). Non-distributional word vector representations. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Vol. 2: Short Papers), Association for Computational Linguistics, Beijing, China, pp. 464–469.
Fellbaum, C. (1998). WordNet: An electronic lexical database., Language: Speech and communication Cambridge: MIT Press.
Google Scholar
Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., & Ruppin, E. (2001). Placing search in context: The concept revisited. In Proceedings of the 10th international conference on world wide web, ACM, New York, NY, USA, WWW ’01, pp. 406–414.
Finlayson, M. A. (2015). MIT Java Wordnet Interface (JWI) user’s guide. Version, 2(4).
Goikoetxea, J., Soroa, A., & Agirre, E. (2015). Random walks and neural network language models on knowledge bases. In Proceedings of the 2015 conference of the North American Chapter of the Association for Computational Linguistics: Human language technologies, Association for Computational Linguistics, Denver, Colorado, pp. 1434–1439.
Golonka, S., & Estes, Z. (2009). Thematic relations affect similarity via commonalities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 1454–1464.
Google Scholar
Harris, Z. S. (1954). Distributional structure. WORD, 10(2–3), 146–162.
Google Scholar
Hill, F., Reichart, R., & Korhonen, A. (2015). Simlex-999: Evaluating semantic models with genuine similarity estimation. Computational Linguistics, 41(4), 665–695.
Google Scholar
Hirst, G., & St-Onge, D. (1998). Lexical chains as representations of context for the detection and correction of malapropisms. In C. Fellbaum (Ed.), WordNet: An Electronic Lexical Database (pp. 305–332). Cambridge: MIT Press.
Google Scholar
Hoyer, P. O. (2002). Nonnegative sparse coding. In Proceedings of the 12th IEEE workshop on neural networks for signal processing (pp. 557–565).
Huang, E. H., Socher, R., Manning, C. D., & Ng, A. Y. (2012). Improving word representations via global context and multiple word prototypes. In Proceedings of the 50th annual meeting of the Association for Computational Linguistics: Long papers—Volume 1, Association for Computational Linguistics, pp. 873–882.
Hutchison, K. A. (2003). Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychonomic Bulletin & Review, 10(4), 785–813.
Google Scholar
Jackson, R. L., Hoffman, P., Pobric, G., & Ralph, M. A. L. (2015). The nature and neural correlates of semantic association versus conceptual similarity. Cerebral Cortex, 25(11), 4319–4333.
Google Scholar
Jakobson, R. (1956). Two aspects of language and two types of aphasic disturbances. In R. Jakobson, & M. Halle (Eds.), Fundamentals of language. The Hague & Paris: Mouton.
Google Scholar
Jiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings of international conference on research in computational linguistics (ROCLING X), Taiwan, pp. 19–33.
Jouravlev, O., & McRae, K. (2015). Thematic relatedness production norms for 100 object concepts. Behavior Research Methods, 48(4), 1349–1357.
Google Scholar
Kelleher, J. D., Namee, B. M., & D’Arcy, A. (2015). Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies. Cambridge: The MIT Press.
Google Scholar
Lakoff, G. (1987). Women, fire and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.
Google Scholar
Langone, H., Haskell, B. R., & Miller, G. A. (2004). Annotating wordnet. DTIC Document: Technical report.
Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. In C. Fellbaum (Ed.), WordNet: An electronic lexical database (pp. 265–283). Cambridge: MIT Press.
Google Scholar
Lebret, R., & Collobert, R. (2014). Word embeddings through hellinger PCA. In Proceedings of the 14th conference of the European chapter of the Association for Computational Linguistics, Association for Computational Linguistics, Gothenburg, Sweden, pp. 482–490.
Levy, O., & Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings of the 52nd annual meeting of the Association for Computational Linguistics (Vol. 2: Short Papers), Association for Computational Linguistics, Baltimore, Maryland, pp. 302–308.
Lin, D. (1998). An information-theoretic definition of similarity. In Proceedings of the fifteenth international conference on machine learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ICML ’98, pp. 296–304.
Lin, E. L., & Murphy, G. L. (2001). Thematic relations in adults’ concepts. Journal of Experimental Psychology: General, 130(1), 3.
Google Scholar
McRae, K., & Boisvert, S. (1998). Automatic semantic similarity priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(3), 558–572.
Google Scholar
McRae, K., & Matsuki, K. (2009). People use their knowledge of common events to understand language, and do so as quickly as possible. Language and Linguistics Compass, 3(6), 1417–1429.
Google Scholar
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. CoRR. arXiv:1301.3781.
Mnih, A., & Hinton, G. E. (2009). A scalable hierarchical distributed language model. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems 21 (pp. 1081–1088). Curran Associates, Inc.
Moldovan, D., & Novischi, A. (2004). Word sense disambiguation of WordNet glosses. Computer Speech & Language, 18(3), 301–317.
Google Scholar
Morris, J., & Hirst, G. (2004). Non-classical lexical semantic relations. In Proceedings of the HLT-NAACL workshop on computational lexical semantics, Association for Computational Linguistics, Stroudsburg, PA, USA, CLS ’04, pp. 46–51.
Morris J., & Hirst G. (2006). The subjectivity of lexical cohesion in text. In J. G. Shanahan, Y. Qu, & J. Wiebe (Eds.) Computing attitude and affect in text: Theory and applications. The information retrieval series (Vol. 20, pp. 41–47). Springer, Dordrecht.
Murphy, B., Talukdar, P. P., & Mitchell, T. M. (2012). Learning effective and interpretable semantic models using non-negative sparse embedding. In M. Kay, & C. Boitet (Eds.), COLING (pp. 1933–1950). Mumbai: Indian Institute of Technology Bombay.
Google Scholar
Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3), 402–407.
Google Scholar
Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). Wordnet:: Similarity: measuring the relatedness of concepts. In Demonstration papers at HLT-NAACL 2004, Association for Computational Linguistics, pp. 38–41.
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), Doha, Qatar: Association for Computational Linguistics, pp. 1532–1543.
Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of a metric on semantic nets. IEEE Transactions on Systems Man and Cybernetics, 19(1), 17–30.
Google Scholar
Reisinger, J., & Mooney, R. J. (2010). Multi-prototype vector-space models of word meaning. In Human language technologies: The 2010 annual conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 109–117.
Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of the 14th international joint conference on artificial intelligence—Volume 1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’95, pp. 448–453.
Schütze, H. (1998). Automatic word sense discrimination. Computational Linguistics, 24(1), 97–123.
Google Scholar
Schwartz, R., Reichart, R., & Rappoport, A. (2015). Symmetric pattern based word embeddings for improved word similarity prediction. In Proceedings of the nineteenth conference on computational natural language learning, Association for Computational Linguistics, Beijing, China, pp. 258–267.
Strube, M., & Ponzetto, S. P. (2006). WikiRelate! Computing semantic relatedness using Wikipedia. In Proceedings of the 21st national conference on artificial intelligence—Volume 2, AAAI Press, Boston, Massachusetts, AAAI’06, pp. 1419–1424.
Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: A simple and general method for semi-supervised learning. In Proceedings of the 48th annual meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 384–394.
Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of the 32Nd annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, Stroudsburg, PA, USA, ACL ’94, pp. 133–138.
Zesch, T., & Gurevych, I. (2010). Wisdom of crowds versus wisdom of linguists—Measuring the semantic relatedness of words. Natural Language Engineering, 16(1), 25–59.
Google Scholar