Skip to main content

A large-scale classification of English verbs

Abstract

Lexical classifications have proved useful in supporting various natural language processing (NLP) tasks. The largest verb classification for English is Levin’s (1993) work which defines groupings of verbs based on syntactic and semantic properties. VerbNet (VN) (Kipper et al. 2000; Kipper-Schuler 2005)—an extensive computational verb lexicon for English—provides detailed syntactic-semantic descriptions of Levin classes. While the classes included are extensive enough for some NLP use, they are not comprehensive. Korhonen and Briscoe (2004) have proposed a significant extension of Levin’s classification which incorporates 57 novel classes for verbs not covered (comprehensively) by Levin. Korhonen and Ryant (unpublished) have recently proposed another extension including 53 additional classes. This article describes the integration of these two extensions into VN. The result is a comprehensive Levin-style classification for English verbs providing over 90% token coverage of the Proposition Bank data (Palmer et al. 2005) and thus can be highly useful for practical applications.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    See http://www.verbs.colorado.edu/verb-index/index.php for details.

  2. 2.

    See Kipper-Schuler (2005) for the full description of VN features.

  3. 3.

    See Korhonen and Briscoe (2004) for the details of this approach.

References

  1. Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley FrameNet Project. In: Proceedings of the 17th International Conference on Computational Linguistics (COLING/ACL-98). Montreal, pp. 86–90.

  2. Boguraev, B., Briscoe, T., Carroll, J., Carter, D., & Grover, C. (1987). The derivation of a grammatically-indexed lexicon from the Longman Dictionary of Contemporary English. In: Proceedings of the 25th Annual Meeting of ACL. Stanford, CA, pp. 193–200.

  3. Brew, C., & Schulte im Walde, S. (2002). Spectral Clustering for German Verbs. In: Conference on Empirical Methods in Natural Language Processing. Philadelphia, USA.

  4. Briscoe, T. (2000). Dictionary and System Subcategorisation Code Mappings. http://www.www.cl.cam.ac.uk/users/alk23/subcat/subcat.html, University of Cambridge.

  5. Croch, D., & King, T. H. (2005). Unifying Lexical Resources. In: Proceedings of Interdisciplinary Workshop on the Identification and Representation of Verb Features and Verb Classes. Saarbrücken, Germany.

  6. Dang, H. T. (2004). Investigations into the role of lexical semantics in word sense disambiguation. Ph.D. thesis, CIS, University of Pennsylvania.

  7. Dorr, B. J. (1997). Large-scale dictionary construction for foreign language tutoring and interlingual machine translation. Machine Translation, 12(4), 271–325.

    Article  Google Scholar 

  8. Dorr, B. J. (2001). LCS Verb Database. In: Online software database of lexical conceptual structures and documentation. University of Maryland.

  9. Fellbaum, C. (Ed.). (1998). WordNet: An eletronic lexical database. Language, speech and communications. Cambridge, Massachusetts: MIT Press.

  10. Grishman, R., Macleod, C., & Meyers, A. (1994). COMLEX syntax: Building a computational lexicon. In: Proceedings of the International Conference on Computational Linguistics. Kyoto, Japan.

  11. Hensman, S., & Dunnion, J. (2004). Automatically building conceptual graphs using VerbNet and WordNet. In: Proceedings of the 3rd International Symposium on Information and Communication Technologies (ISICT). Las Vegas, NV, pp. 115–120.

  12. Jackendoff, R. (1990). Semantic structures. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  13. Kingsbury, P. (2004). Verb clusters from PropBank annotation. Technical Report, University of Pennsylvania, Philadelphia, PA.

  14. Kingsbury, P., & Palmer, M. (2002). From Treebank to PropBank. In: Proceedings of the 3rd International Conference on Language Resources and Evaluation. Las Palmas, Spain.

  15. Kipper, K., Dang, H. T., & Palmer, M. (2000). Class-based construction of a verb lexicon. In: AAAI/IAAI. pp. 691–696.

  16. Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2006a). Extending VerbNet with novel verb classes. In: Proceedings of the 5th International Conference on Language Resources and Evaluation. Genova, Italy.

  17. Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2006b). A large-scale extension of VerbNet with novel verb classes. In: Proceedings of Euralex. Turin, Italy.

  18. Kipper-Schuler, K. (2005). VerbNet: A broad-coverage, comprehensive verb lexicon. Ph.D. thesis, Computer and Information Science Dept., University of Pennsylvania, PA.

  19. Korhonen, A. (2002). Semantically motivated subcategorization acquisition. In: ACL Workshop on Unsupervised Lexical Acquisition. Philadelphia.

  20. Korhonen, A. & Briscoe, T. (2004). Extended lexical-semantic classification of English verbs. In: Proceedings of the HLT/NAACL Workshop on Computational Lexical Semantics. Boston, MA.

  21. Korhonen, A., Krymolowski, Y., & Marx, Z. (2003). Clustering polysemic subcategorization frame distributions semantically. In: Proceedings of the 41st Annual Meeting of ACL. Sapporo, Japan, pp. 64–71.

  22. Levin, B. (1993). English verb classes and alternation, A preliminary investigation. The University of Chicago Press.

  23. Loper, E., Yi, S-t., & Palmer, M. (2007). Combining lexical resources: Mapping between PropBank and VerbNet. In: Proceedings of the 7th International Workshop on Computational Semantics. Tilburg, the Netherlands.

  24. McCarthy, D. (2001). Lexical acquisition at the syntax-semantics interface. Ph.D. thesis, University of Sussex.

  25. Miller, G. A. (1990). WordNet: An on-line lexical database. International Journal of Lexicography, 3(4), 235–312.

    Article  Google Scholar 

  26. Moens, M., & Steedman, M. (1988). Temporal ontology and temporal reference. Computational Linguistics, 14, 15–38.

    Google Scholar 

  27. Palmer, M., Gildea, D., & Kingsbury, P. (2005). The Proposition Bank: A corpus annotated with semantic roles. Computational Linguistics 31(1), 71–106.

    Google Scholar 

  28. Pinker, S. (1989). Learnability and cognition: The acquisition of argument structure. Cambridge: MIT Press.

    Google Scholar 

  29. Pradhan, S., Loper, E., Dligach, D., & Palmer, M. (2007). SemEval-2007 Task-17: English lexical sample, SRL and all words. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007). ACL-2007, Prague, the Czech Republic.

  30. Prescher, D., Riezler, S., & Rooth, M. (2000). Using a Probabilistic class-based lexicon for lexical ambiguity resolution. In: Proceedings of the 18th International Conference on Computational Linguistics. Saarbrücken, Germany, pp. 649–655.

  31. Rudanko, J. (1996). Prepositions and complement clauses. Albany: State University of New York Press.

    Google Scholar 

  32. Rudanko, J. (2000). Corpora and complementation. University Press of America.

  33. Sager, N. (1981). Natural language information processing: A computer grammar of English and its applications. MA: Addison-Wesley Publising Company.

    Google Scholar 

  34. Shi, L., & Mihalcea, R. (2005). Putting pieces together: Combining FrameNet, VerbNet and WordNet for robust semantic parsing. In: Proceedings of the Sixth International Conference on Intelligent Text Processing and Computational Linguistics. Mexico City.

  35. Swier, R., & Stevenson, S. (2004). Unsupervised semantic role labelling. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Barcelona, Spain, pp. 95–102.

  36. Swift, M. (2005). Towards automatic verb acquisition from VerbNet for spoken dialog processing. In: Proceedings of Interdisciplinary Workshop on the Identification and Representation of Verb Features and Verb Classes. Saarbrücken, Germany.

  37. Yi, S-t., Loper, E., & Palmer, M. (2007). Can semantic roles generalize across genres? In: Proceedings of HLT/NAACL-2007. Rochester, NY, USA.

  38. Trumbo, D. (2006). Increasing the usability of research lexica. Computer Science Master’s Thesis, University of Colorado.

  39. XTAG Research Group (2001). A lexicalized tree adjoining grammar for English. Technical Report IRCS-01-03, IRCS, University of Pennsylvania.

Download references

Acknowledgments

This work was supported by National Science Foundation Grants NSF-9800658: VerbNet, NSF-9910603: ISLE, International Standards for Language Engineering, NSF-0415923: Advancing the Performance of Word Sense Disambiguation, the DTO-AQUAINT NBCHC040036 grant under the University of Illinois subcontract to the University of Pennsylvania 2003-07911-01, DARPA Grant N66001-00-1-8915 at the University of Pennsylvania, EPSRC project ‘ACLEX’ at the University of Cambridge Computer Laboratory (UK), and the Royal Society (UK).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Korhonen.

Appendix

Appendix

Fig. 2
figure2

VerbNet description of the new verb class APPROVE

Fig. 3
figure3

VerbNet description of the new verb class CONSUME

Table 6 VerbNet syntactic features

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kipper, K., Korhonen, A., Ryant, N. et al. A large-scale classification of English verbs. Lang Resources & Evaluation 42, 21–40 (2008). https://doi.org/10.1007/s10579-007-9048-2

Download citation

Keywords

  • Lexical classification
  • Lexical resources
  • Computational linguistics