Skip to main content
Log in

Brain Anatomy in Boys with Conduct Disorder: Differences Among Aggression Subtypes

  • Original Article
  • Published:
Child Psychiatry & Human Development Aims and scope Submit manuscript

Abstract

Aggression is a core feature of conduct disorder (CD), but the motivation, execution of aggression may vary. A deeper understanding of the neural substrates of aggressive behaviours is critical for effective clinical intervention. Seventy-six Boys with CD (50 with impulsive aggression (I-CD) and 26 with premeditated aggression (P-CD)) and 69 healthy controls (HCs) underwent a structural MRI scan and behavioural assessments. Whole-brain analyses revealed that, compared to HCs, the I-CD group showed significant cortical thinning in the right frontal cortex, while the P-CD group demonstrated significant folding deficits in the bilateral superior parietal cortex. Both types of aggression negatively correlated with the left amygdala volume, albeit in different ways. The present results demonstrated that the complex nature of aggression relies on differentiated anatomical substrates, highlighting the importance of exploring differential circuit-targeted interventions for CD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. APA (2000) Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR)

  2. Fairchild G (2018) Adult outcomes of conduct problems in childhood or adolescence: further evidence of the societal burden of conduct problems. Eur Child Adolesc Psychiatry 27:1235–1237. https://doi.org/10.1007/s00787-018-1221-1

    Article  PubMed  Google Scholar 

  3. Berkowitz L (1994) Aggression: its causes, consequences, and control. Contemp Sociol 575

  4. Blair RJR (2016) The Neurobiology of Impulsive Aggression. J Child Adolesc Psychopharmacol 26:4–9. https://doi.org/10.1089/cap.2015.0088

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165:429–442. https://doi.org/10.1176/appi.ajp.2008.07111774

    Article  PubMed  PubMed Central  Google Scholar 

  6. Akil H, Brenner S, Kandel E et al (2010) The future of psychiatric research: genomes and neural circuits. Sci (80-) 327:1580–1581

    Article  Google Scholar 

  7. Blair RJR, Veroude K, Buitelaar JK (2018) Neuro-cognitive system dysfunction and symptom sets: A review of fMRI studies in youth with conduct problems. Neurosci Biobehav Rev 91:69–90. https://doi.org/10.1016/j.neubiorev.2016.10.022

    Article  PubMed  Google Scholar 

  8. Padhy R, Saxena K, Remsing L et al (2011) Symptomatic response to divalproex in subtypes of conduct disorder. Child Psychiatry Hum Dev 42. https://doi.org/10.1007/s10578-011-0234-5

  9. Cui L, Colasante T, Malti T et al (2016) Dual Trajectories of Reactive and Proactive Aggression from Mid-childhood to Early Adolescence: Relations to Sensation Seeking, Risk Taking, and Moral Reasoning. J Abnorm Child Psychol 44:663–675. https://doi.org/10.1007/s10802-015-0079-7

    Article  PubMed  Google Scholar 

  10. Raine A, Dodge K, Loeber R et al (2006) The Reactive–Proactive Aggression Questionnaire: Differential Correlates of Reactive and Proactive Aggression in Adolescent Boys. Aggress Behav 32:159

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stanford MS, Houston RJ, Mathias CW et al (2003) Characterizing aggressive behavior. Assessment 10:183

    Article  PubMed  Google Scholar 

  12. Dambacher F, Schuhmann T, Lobbestael J et al (2015) Reducing proactive aggression through non-invasive brain stimulation. Soc Cogn Affect Neurosci 10:1303–1309. https://doi.org/10.1093/scan/nsv018

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hubbard JA, McAuliffe MD, Morrow MT, Romano LJ (2010) Reactive and proactive aggression in childhood and adolescence: precursors, outcomes, processes, experiences, and measurement. J Pers 78:95–118. https://doi.org/10.1111/j.1467-6494.2009.00610.x

    Article  PubMed  Google Scholar 

  14. Krall SC, Rottschy C, Oberwelland E et al (2015) The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis. Brain Struct Funct 220:587–604. https://doi.org/10.1007/s00429-014-0803-z

    Article  PubMed  Google Scholar 

  15. Decety J, Lamm C (2007) The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist 13:580–593. https://doi.org/10.1177/1073858407304654

    Article  PubMed  Google Scholar 

  16. Fairchild G, Hagan CC, Walsh ND et al (2013) Brain structure abnormalities in adolescent girls with conduct disorder. J Child Psychol Psychiatry 54:86–95. https://doi.org/10.1111/j.1469-7610.2012.02617.x

    Article  PubMed  Google Scholar 

  17. Huebner T, Vloet TD, Marx I et al (2008) Morphometric brain abnormalities in boys with conduct disorder. J Am Acad Child Adolesc Psychiatry 47:540–547. https://doi.org/10.1097/CHI.0b013e3181676545

    Article  PubMed  Google Scholar 

  18. Boes AD, Tranel D, Anderson SW, Nopoulos P (2008) Right anterior cingulate: A neuroanatomical correlate of aggression and defiance in boys. Behav Neurosci 122:677–684. https://doi.org/10.1037/0735-7044.122.3.677

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang Y, Guo X, Zhang J et al (2015) Abnormalities of cortical structures in adolescent-onset conduct disorder. Psychol Med 45:3467–3479. https://doi.org/10.1017/s0033291715001361

    Article  PubMed  Google Scholar 

  20. Sterzer P, Stadler C, Poustka F, Kleinschmidt A (2007) A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. NeuroImage 37:335–342. https://doi.org/10.1016/j.neuroimage.2007.04.043

    Article  PubMed  Google Scholar 

  21. Cardinale EM, O’Connell K, Robertson EL et al (2018) Callous and uncaring traits are associated with reductions in amygdala volume among youths with varying levels of conduct problems. Psychol Med 1–10. https://doi.org/10.1017/S0033291718001927

  22. Fairchild G, Toschi N, Hagan CC et al (2015) Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous-unemotional traits. NeuroImage Clin. https://doi.org/10.1016/j.nicl.2015.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hyatt CJ, Haney-Caron E, Stevens MC (2012) Cortical thickness and folding deficits in conduct-disordered adolescents. Biol Psychiatry 72:207–214. https://doi.org/10.1016/j.biopsych.2011.11.017

    Article  PubMed  Google Scholar 

  24. Sarkar S, Daly E, Feng Y et al (2014) Reduced cortical surface area in adolescents with conduct disorder. Eur Child Adolesc Psychiatry. https://doi.org/10.1007/s00787-014-0639-3

    Article  PubMed  Google Scholar 

  25. Wallace GL, White S, Robustelli B et al (2014) Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous unemotional traits. J Am Acad Child Adolesc Psychiatry 53:456–465

    Article  PubMed  Google Scholar 

  26. Naaijen J, Mulder LM, Ilbegi S et al (2018) Reactive/proactive aggression specific cortical and subcortical alterations in children and adolescents with disruptive behavior. bioRxiv 490086. https://doi.org/10.1101/490086

  27. Yang YL, Joshi SH, Jahanshad N et al (2017) Neural correlates of proactive and reactive aggression in adolescent twins. Aggress Behav 43:230–240. https://doi.org/10.1002/ab.21683

    Article  PubMed  Google Scholar 

  28. Wranghama RW (2017) Two types of aggression in human evolution. Proc Natl Acad Sci U S A 115:245–253. https://doi.org/10.1073/pnas.1713611115

    Article  Google Scholar 

  29. Kokkinos CM, Kirpitsi E, Voulgaridou I, Markos A (2020) Reactive and proactive aggression subgroups in early adolescents and the interplay among callous-unemotional traits, moral disengagement, empathy and functions of aggression. Curr Psychol. https://doi.org/10.1007/s12144-020-00858-2

    Article  Google Scholar 

  30. Lu F, Wang M, Xu S et al (2020) Decreased interhemispheric resting-state functional connectivity in male adolescents with conduct disorder. Brain Imaging Behav. https://doi.org/10.1007/s11682-020-00320-8

    Article  PubMed  PubMed Central  Google Scholar 

  31. First M, Spitzer R, Gibbon M, Williams J (2002) Structured Clinical Interview for DSM-IV-TR Axis I Disorders–Patient Edtion (SCID-I/P, 11/2002 revision). New York State Psychiatric Institute, New York

    Google Scholar 

  32. Gong YX, Cai TS (1993) Wechsler intelligence scale for children, Chinese revision (C-WISC). Map Press Hunan, China

    Google Scholar 

  33. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  Google Scholar 

  34. Chen XG, Li F, Nydegger L et al (2013) Brief Sensation Seeking Scale for Chinese - Cultural adaptation and psychometric assessment. Pers Individ Dif 54:604–609. https://doi.org/10.1016/j.paid.2012.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haden SC, Scarpa A, Stanford MS (2008) Validation of the Impulsive/Premeditated Aggression Scale in college students. J Aggress Maltreatment Trauma 17:352–373

    Article  Google Scholar 

  36. Kockler TR, Stanford MS, Nelson CE et al (2006) Characterizing aggressive behavior in a forensic population. Am J Orthopsychiatry 76:80

    Article  PubMed  Google Scholar 

  37. Yao S, Zhang C, Zhu X et al (2009) Measuring adolescent psychopathology: psychometric properties of the self-report strengths and difficulties questionnaire in a sample of Chinese adolescents. J Adolesc Heal 45:55–62. https://doi.org/10.1016/j.jadohealth.2008.11.006

    Article  Google Scholar 

  38. Frick PJHRD (2001) Antisocial process screening device: APSD. Multi-Health Systems, Toronto

    Google Scholar 

  39. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194. https://doi.org/10.1006/nimg.1998.0395

    Article  PubMed  Google Scholar 

  40. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207. https://doi.org/10.1006/nimg.1998.0396

    Article  PubMed  Google Scholar 

  41. Jiang Y, Liu W, Ming Q et al (2016) Disrupted Topological Patterns of Large-Scale Network in Conduct Disorder. Sci Rep 6:37053. https://doi.org/10.1038/srep37053

    Article  PubMed  PubMed Central  Google Scholar 

  42. Winkler AM, Sabuncu MR, Yeo BT et al (2012) Measuring and comparing brain cortical surface area and other areal quantities. NeuroImage 61:1428–1443. https://doi.org/10.1016/j.neuroimage.2012.03.026

    Article  PubMed  Google Scholar 

  43. Schaer M, Cuadra MB, Tamarit L et al (2008) A surface-based approach to quantify local cortical gyrification. IEEE Trans Med Imaging 27:161–170. https://doi.org/10.1109/TMI.2007.903576

    Article  PubMed  Google Scholar 

  44. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  PubMed  Google Scholar 

  45. Lehmann M, Douiri A, Kim LG et al (2010) Atrophy patterns in Alzheimer’s disease and semantic dementia: a comparison of FreeSurfer and manual volumetric measurements. NeuroImage 49:2264–2274. https://doi.org/10.1016/j.neuroimage.2009.10.056

    Article  PubMed  Google Scholar 

  46. Meijerman A, Amiri H, Steenwijk MD et al (2018) Reproducibility of Deep Gray Matter Atrophy Rate Measurement in a Large Multicenter Dataset. AJNR Am J Neuroradiol 39:46–53. https://doi.org/10.3174/ajnr.A5459

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wismueller A, Vietze F, Dersch DR et al (1999) Adaptive self-organized template matching of the gray-level feature space for automatic segmentation of multispectral MRI data of the human brain. Radiology 213:364

    Google Scholar 

  48. Hagler DJ, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage 33:1093–1103. https://doi.org/10.1016/j.neuroimage.2006.07.036

    Article  PubMed  Google Scholar 

  49. Blair RJ (2010) Psychopathy, frustration, and reactive aggression: the role of ventromedial prefrontal cortex. Br J Psychol 101:383–399. https://doi.org/10.1348/000712609X418480

    Article  PubMed  Google Scholar 

  50. Moran JK, Weierstall R, Elbert T (2014) Differences in brain circuitry for appetitive and reactive aggression as revealed by realistic auditory scripts. Front Behav Neurosci 8:425. https://doi.org/10.3389/fnbeh.2014.00425

    Article  PubMed  PubMed Central  Google Scholar 

  51. Soloff PH, Meltzer CC, Becker C et al (2003) Impulsivity and prefrontal hypometabolism in borderline personality disorder. Psychiatry Res 123:153–163

    Article  PubMed  Google Scholar 

  52. Yang YL, Raine A, Lencz T et al (2005) Volume reduction in prefrontal gray matter in unsuccessful criminal psychopaths. Biol Psychiatry 57:1103–1108. https://doi.org/10.1016/j.biopsych.2005.01.021

    Article  PubMed  Google Scholar 

  53. Zhang J, Li B, Gao J et al (2015) Impaired Frontal-Basal Ganglia Connectivity in Male Adolescents with Conduct Disorder. PLoS One10

  54. New AS, Buchsbaum MS, Hazlett EA et al (2004) Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacol 176:451–458. https://doi.org/10.1007/s00213-004-1913-8

    Article  Google Scholar 

  55. Perach-Barzilay N, Tauber A, Klein E et al (2013) Asymmetry in the dorsolateral prefrontal cortex and aggressive behavior: a continuous theta-burst magnetic stimulation study. Soc Neurosci 8:178–188. https://doi.org/10.1080/17470919.2012.720602

    Article  PubMed  Google Scholar 

  56. Thomson ND, Centifanti LCM (2018) Proactive and Reactive Aggression Subgroups in Typically Developing Children: The Role of Executive Functioning, Psychophysiology, and Psychopathy. Child Psychiatry Hum Dev 49:197–208. https://doi.org/10.1007/s10578-017-0741-0

    Article  PubMed  Google Scholar 

  57. Blair RJ (2004) The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain Cogn 55:198–208. https://doi.org/10.1016/S0278-2626(03)00276-8

    Article  PubMed  Google Scholar 

  58. Best M, Williams JM, Coccaro EF (2002) Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc Natl Acad Sci U S A 99:8448–8453. https://doi.org/10.1073/pnas.112604099

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dougherty DM, Dew RE, Mathias CW et al (2007) Impulsive and premeditated subtypes of aggression in conduct disorder: Differences in time estimation. Aggress Behav 33:574–582. https://doi.org/10.1002/ab.20219

    Article  PubMed  Google Scholar 

  60. Bolte S, Hubl D, Feineis-Matthews S et al (2006) Facial affect recognition training in autism: Can we animate the fusiform gyrus? Behav Neurosci 120:211–216. https://doi.org/10.1037/0735-7044.120.1.211

    Article  PubMed  Google Scholar 

  61. Schienle A, Wabnegger A, Leitner M, Leutgeb V (2017) Neuronal correlates of personal space intrusion in violent offenders. Brain Imaging Behav 11:454–460. https://doi.org/10.1007/s11682-016-9526-5

    Article  PubMed  Google Scholar 

  62. Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations the role of the human superior parietal lobe. Nat Neurosci 1:529–533. https://doi.org/10.1038/2245

    Article  PubMed  Google Scholar 

  63. Decety J, Moriguchi Y (2007) The empathic brain and its dysfunction in psychiatric populations: implications for intervention across different clinical conditions. Biopsychosoc Med 1:22. https://doi.org/10.1186/1751-0759-1-22

    Article  PubMed  PubMed Central  Google Scholar 

  64. Euler F, Steinlin C, Stadler C (2017) Distinct profiles of reactive and proactive aggression in adolescents: associations with cognitive and affective empathy. Child Adolesc Psychiatry Ment Heal 11:1. https://doi.org/10.1186/s13034-016-0141-4

    Article  Google Scholar 

  65. Gillespie SM, Kongerslev MT, Sharp C et al (2018) Does Affective Theory of Mind Contribute to Proactive Aggression in Boys with Conduct Problems and Psychopathic Tendencies? Child Psychiatry Hum Dev 49:906–916. https://doi.org/10.1007/s10578-018-0806-8

    Article  PubMed  PubMed Central  Google Scholar 

  66. Baskin-Sommers AR, Curtin JJ, Newman JP (2011) Specifying the Attentional Selection That Moderates the Fearlessness of Psychopathic Offenders. Psychol Sci 22:226–234. https://doi.org/10.1177/0956797610396227

    Article  PubMed  Google Scholar 

  67. Yoder KJ, Porges EC, Decety J (2015) Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample. Hum Brain Mapp 36:1417–1428. https://doi.org/10.1002/hbm.22712

    Article  PubMed  Google Scholar 

  68. Lamsma J, Mackay C, Fazel S (2017) Structural brain correlates of interpersonal violence: Systematic review and voxel-based meta-analysis of neuroimaging studies. Psychiatry Res Neuroimaging 267:69–73. https://doi.org/10.1016/j.pscychresns.2017.07.006

    Article  PubMed  Google Scholar 

  69. Pardini DA, Raine A, Erickson K, Loeber R (2014) Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol Psychiatry 75:73–80. https://doi.org/10.1016/j.biopsych.2013.04.003

    Article  PubMed  Google Scholar 

  70. Birbaumer N, Veit R, Lotze M et al (2005) Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch Gen Psychiatry 62:799–805. https://doi.org/10.1001/archpsyc.62.7.799

    Article  PubMed  Google Scholar 

  71. Coccaro EF, McCloskey MS, Fitzgerald DA, Phan KL (2007) Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol Psychiatry 62:168–178. https://doi.org/10.1016/j.biopsych.2006.08.024

    Article  PubMed  Google Scholar 

  72. Jones AP, Laurens KR, Herba CM et al (2009) Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. Am J Psychiatry 166:95–102. https://doi.org/10.1176/appi.ajp.2008.07071050

    Article  PubMed  Google Scholar 

  73. Marsh AA, Finger EC, Mitchell DG et al (2008) Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. Am J Psychiatry 165:712–720. https://doi.org/10.1176/appi.ajp.2007.07071145

    Article  PubMed  Google Scholar 

  74. Berridge KC (2019) Affective valence in the brain: modules or modes? Nat Rev Neurosci 20:225–234. https://doi.org/10.1038/s41583-019-0122-8

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lu FM, Zhou JS, Zhang J et al (2017) Disrupted small-world brain network topology in pure conduct disorder. Oncotarget 8:65506–65524. https://doi.org/10.18632/oncotarget.19098

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lozier LM, Cardinale EM, VanMeter JW, Marsh AA (2014) Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry 71:627–636. https://doi.org/10.1001/jamapsychiatry.2013.4540

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sebastian CL, De Brito SA, McCrory EJ et al (2016) Grey Matter Volumes in Children with Conduct Problems and Varying Levels of Callous-Unemotional Traits. J Abnorm Child Psychol 44:639–649. https://doi.org/10.1007/s10802-015-0073-0

    Article  PubMed  Google Scholar 

  78. Rogers JC, De Brito SA (2016) Cortical and Subcortical Gray Matter Volume in Youths With Conduct Problems: A Meta-analysis. JAMA Psychiatry 73:64–72. https://doi.org/10.1001/jamapsychiatry.2015.2423

    Article  PubMed  Google Scholar 

  79. Shaw P, Kabani NJ, Lerch JP et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594. https://doi.org/10.1523/JNEUROSCI.5309-07.2008

    Article  PubMed  PubMed Central  Google Scholar 

  80. Arnaud M, David R, Habib B, Guillaume M (2014) Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comput Biol 10:e1003530

    Article  Google Scholar 

  81. Liu F, Wee CY, Chen H, Shen D (2014) Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification. NeuroImage 84:466–475

    Article  PubMed  Google Scholar 

  82. Guo W, Song Y, Liu F et al (2015) Dissociation of functional and anatomical brain abnormalities in unaffected siblings of schizophrenia patients. Clin Neurophysiol 126:927–932. https://doi.org/10.1016/j.clinph.2014.08.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant numbers 81471384), the Guangdong Basic and Applied Basic Research Foundation (2021A1515011359).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijun Situ or Shuqiao Yao.

Ethics declarations

Declarations of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Gao, Y., Dong, D. et al. Brain Anatomy in Boys with Conduct Disorder: Differences Among Aggression Subtypes. Child Psychiatry Hum Dev 55, 3–13 (2024). https://doi.org/10.1007/s10578-022-01360-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10578-022-01360-5

Keywords

Navigation