Skip to main content
Log in

Early Life Characteristics and Neurodevelopmental Phenotypes in the Mount Sinai Children’s Environmental Health Center

  • Original Article
  • Published:
Child Psychiatry & Human Development Aims and scope Submit manuscript

Abstract

Neurodevelopmental outcomes including behavior, executive functioning, and IQ exhibit complex correlational structures, although they are often treated as independent in etiologic studies. We performed a principal components analysis of the behavioral assessment system for children, the behavior rating inventory of executive functioning, and the Wechsler scales of intelligence in a prospective birth cohort, and estimated associations with early life characteristics. We identified seven factors: (1) impulsivity and externalizing, (2) executive functioning, (3) internalizing, (4) perceptual reasoning, (5) adaptability, (6) processing speed, and (7) verbal intelligence. Prenatal fish consumption, maternal education, preterm birth, and the home environment were important predictors of various neurodevelopmental factors. Although maternal smoking was associated with more adverse externalizing, executive functioning, and adaptive composite scores in our sample, of the orthogonally-rotated factors, smoking was only associated with the impulsivity and externalizing factor (\(\hat{\beta}\) − 0.82, 95% CI − 1.42, − 0.23). These differences may be due to correlations among outcomes that were accounted for by using a phenotypic approach. Dimension reduction may improve upon traditional approaches by accounting for correlations among neurodevelopmental traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Calkins ME, Merikangas KR, Moore TM, Burstein M, Behr MA, Satterthwaite TD et al (2015) The Philadelphia Nneurodevelopmental cohort: constructing a deep phenotyping collaborative. J Child Psychol Psychiatry 56(12):1356–1369

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1):65

    Article  PubMed  Google Scholar 

  3. Jensen PS, Martin D, Cantwell DP (1997) Comorbidity in ADHD: implications for research, practice, and DSM-V. J Am Acad Child Adolesc Psychiatry 36(8):1065–1079

    Article  PubMed  Google Scholar 

  4. Sartorius N, Üstün TB, Lecrubier Y, Wittchen H-U (1996) Depression comorbid with anxiety: results from the WHO study on "Psychological disorders in primary health care”. Br J Psychiatry 168:38–43

  5. Neisser U, Boodoo G, Bouchard TJ Jr, Boykin AW, Brody N, Ceci SJ et al (1996) Intelligence: knowns and unknowns. Am Psychol 51(2):77

  6. Linnet KM, Dalsgaard S, Obel C, Wisborg K, Henriksen TB, Rodriguez A et al (2003) Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am J Psychiatry 160(6):1028–1040

    Article  PubMed  Google Scholar 

  7. Berkowitz GS, Obel J, Deych E, Lapinski R, Godbold J, Liu Z et al (2003) Exposure to indoor pesticides during pregnancy in a multiethnic, urban cohort. Environ Health Perspect 111(1):79

    Article  PubMed  PubMed Central  Google Scholar 

  8. Caldwell BM, Bradley RH (1984) Home observation for measurement of the environment. University of Arkansas at Little Rock Little Rock

  9. Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Siskind J, Meisel SJ et al (2007) Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton neonatal behavioral assessment scale in a multiethnic pregnancy cohort. Am J Epidemiol 165(12):1397–1404

    Article  PubMed  Google Scholar 

  10. Gioia GA, Guy SC, Isquith PK, Kenworthy L (1996) Behavior rating inventory of executive function. Psychological Assessment Resources, Lutz

  11. Reynolds C, Kamphaus R (1998) BASC: behavior assessment system for children: manual. American guidance service

  12. Sandoval J, Echandia A (1995) Behavior assessment system for children. J Sch Psychol 32(4):419–425

    Article  Google Scholar 

  13. Dunn DM, Dunn LM (1997) Peabody picture vocabulary test: manual. Pearson, London

  14. Dziuban CD, Shirkey EC (1974) When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychol Bull 81(6):358

    Article  Google Scholar 

  15. MacCallum RC, Widaman KF, Zhang S, Hong S (1999) Sample size in factor analysis. Psychol Methods 4(1):84

    Article  Google Scholar 

  16. Hayton JC, Allen DG, Scarpello V (2004) Factor retention decisions in exploratory factor analysis: a tutorial on parallel analysis. Organ Res Methods 7(2):191–205

    Article  Google Scholar 

  17. Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H et al (2005) Maternal fish consumption, hair mercury, and infant cognition in a US cohort. Environ Health perspect 113:1376–1380

  18. Daniels JL, Longnecker MP, Rowland AS, Golding J, Team AS (2004) Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 15(4):394–402

    Article  PubMed  Google Scholar 

  19. Julvez J, Méndez M, Fernandez-Barres S, Romaguera D, Vioque J, Llop S et al (2016) Maternal consumption of seafood in pregnancy and child neuropsychological development: a longitudinal study based on a population with high consumption levels. Am J Epidemiol 183(3):169–182

    Article  PubMed  Google Scholar 

  20. Sagiv SK, Thurston SW, Bellinger DC, Amarasiriwardena C, Korrick SA (2012) Prenatal exposure to mercury and fish consumption during pregnancy and attention-deficit/hyperactivity disorder–related behavior in children. Arch Pediatr Adolesc Med 166(12):1123–1131

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gale CR, Robinson SM, Godfrey KM, Law CM, Schlotz W, O’Callaghan F (2008) Oily fish intake during pregnancy–association with lower hyperactivity but not with higher full-scale IQ in offspring. J Child Psychol Psychiatry 49(10):1061–1068

    Article  PubMed  Google Scholar 

  22. Field A, Miles J, Field Z (2012) Discovering statistics using R. SAGE Publications Ltd, Thousand Oaks

    Google Scholar 

  23. Johnson W, Bouchard TJ (2005) The structure of human intelligence: it is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence 33(4):393–416

    Article  Google Scholar 

  24. Bodnar LE, Prahme MC, Cutting LE, Denckla MB, Mahone EM (2007) Construct validity of parent ratings of inhibitory control. Child Neuropsychol 13(4):345–362

    Article  PubMed  Google Scholar 

  25. McAuley T, Chen S, Goos L, Schachar R, Crosbie J (2010) Is the behavior rating inventory of executive function more strongly associated with measures of impairment or executive function? J Int Neuropsychol Soc 16(03):495–505

    Article  PubMed  Google Scholar 

  26. Gilbert SG, Grant-Webster KS (1995) Neurobehavioral effects of developmental methylmercury exposure. Environ Health Perspect 103(Suppl 6):135

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C et al (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369(9561):578–585

    Article  Google Scholar 

  28. Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290(3):337–344

    Article  PubMed  Google Scholar 

  29. Christ SE, Holt DD, White DA, Green L (2007) Inhibitory control in children with autism spectrum disorder. J Autism Dev Disord 37(6):1155–1165

    Article  PubMed  Google Scholar 

  30. MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC et al (2014) The evolution of self-control. Proc Natl Acad Sci 111(20):E2140–E2148

  31. Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ Br Med J316(7139):1236

    Article  PubMed  PubMed Central  Google Scholar 

  32. Langley K, Rice F, van den Bree MB, Thapar A (2005) Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Miner Pediatr 57(6):359–371

    PubMed  Google Scholar 

  33. Daseking M, Petermann F, Tischler T, Waldmann H-C (2015) Smoking during pregnancy is a risk factor for executive function deficits in preschool-aged children. Geburtshilfe Frauenheilkd 75(01):64–71

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thapar A, Rice F, Hay D, Boivin J, Langley K, Van Den Bree M et al (2009) Prenatal smoking might not cause attention-deficit/hyperactivity disorder: evidence from a novel design. Biol Psychiatry 66(8):722–727

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaufman JS, MacLehose RF, Kaufman S (2004) A further critique of the analytic strategy of adjusting for covariates to identify biologic mediation. Epidemiol Perspect Innov 1(1):4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Environmental Health Sciences/U.S. Environmental Protection Agency Children’s Center Grants ES09584 and R827039, the New York Community Trust, and the Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention (CDC)/Association of Teachers of Preventive Medicine. M. Furlong was supported by NIEHS institutional training Grant T32ES007018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Furlong.

Ethics declarations

Conflict of interest

No authors have conflicts of interest to report.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 KB)

Appendices

Appendix 1

Origination and follow-up of participants included in principal components analysis and regression analyses

figure a

.

Appendix 2

Instruments included in principal components analysis of intelligence, executive functioning and behavior in the Mount Sinai Children’s Environmental Health Study.

Instrument

Scales

Age assessed, N children

Wechsler preschool and primary scales of intelligence (WPPSI-III)

Verbal IQ (subtest: vocabulary)

Performance IQ (subtests: block design, matrix reasoning, picture concepts)

Processing speed index (subtests: symbol search, coding)

Full scale IQ

6 years (n = 162)

Wechsler intelligence scale for children (WISC-IV)

Verbal IQ (subtests: vocabulary)

Perceptual reasoning (subtests: block design, matrix reasoning, picture concepts)

Processing speed index (subtests: symbol search, coding)

Full scale IQ

7–9 years (n = 161)

Behavior rating inventory of executive functioning (BRIEF)

Behavioral regulation index (subtests: inhibit, shift, emotional control)

Metacognition index (initiate, working memory, plan/organize, Organization of materials, monitor)

Global executive composite

4–9 years (N = 242)

Behavioral assessment scale for children (BASC)

Externalizing problems (aggression, hyperactivity, conduct problems)

Internalizing problems (anxiety, depression, somatization,)

Adaptive skills composite (Adaptability, leadership, social skills)

Other problems (atypicality, withdrawal)

Behavioral symptoms index (aggression, hyperactivity, anxiety, Depression, attention problems, atypicality)

4–9 years (N = 238)

  1. 210 participants had the BASC, the BRIEF, and either the WPPSI-III or the WISC-IV

Appendix 3

Description of home subscales.

The HOME subscales include (1) involvement, which measures how an adult interacts physically with the child (sample items include: parent keeps child within visual range, talks to child while doing work); (2) learning Materials, which measures whether a child has appropriate play materials at home and elsewhere (sample items include: child has one or more large muscle activity toys); (3) organization, which measures how a child’s time is organized outside the house and what personal space looks like (sample items include: safe play environment, regular caregivers); (4) acceptance, which measures how the adult disciplines the child (sample items include: parent does not shout at child during visit, parent not overly restrictive of child’s movements), (5) responsivity, which measures the emotional and verbal sensitivity and responsivity of parent to the child (sample items include: mother caresses or kisses child at least once during visit), and (6) variety, which measures opportunities for variety in daily stimulation (sample items include: father provides some caregiving every day, family visits or receives visits from relatives approximately once a month).

Appendix 4

Bivariate associations between early life characteristics and neurodevelopmental factors in the mount sinai children’s environmental health center.

 

N

Factor 1

Impulsivity and externalizing β (95% CI)

Factor 2

Executive functioning β (95% CI)

Factor 3

Internalizing β (95% CI)

Factor 4

Perceptual reasoning β (95% CI)

Factor 5

Adaptability β (95% CI)

Factor 6

Processing speed β (95% CI)

Factor 7

Verbal intelligence β (95% CI)

Maternal marital status at follow up

 Married

61

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 Living with partner

39

0.12 (− 0.28, 0.51)

0.20 (− 0.20, 0.61)

0.11 (− 0.30, 0.51)

− 0.29 (− 0.69, 0.10)

− 0.25 (− 0.64, 0.14)

0.20 (− 0.20, 0.59)

− 0.48 (− 0.87, − 0.08)

 Single/divorced/ widowed

99

− 0.27 (− 0.58, 0.05)

0.07 (− 0.25, 0.39)

− 0.02 (− 0.34, 0.30)

− 0.41 (− 0.73, − 0.10)

− 0.46 (− 0.76, − 0.15)

0.09 (− 0.23, 0.40)

− 0.33 (− 0.65, − 0.02)

 Pr > χ2

 

0.07

0.61

0.80

0.04

0.02

0.62

0.04

Maternal IQ

       

 IQ < 100

91

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 IQ ≥ 100

45

0.12 (− 0.24, 0.48)

− 0.49 (− 0.85, − 0.13)

− 0.04 (− 0.38, 0.30)

0.54 (0.19, 0.89)

0.18 (− 0.18, 0.53)

0.06 (− 0.28, 0.39)

0.80 (0.51, 1.10)

 Pr > χ2

 

0.50

0.01

0.82

< 0.01

0.32

0.74

< 0.01

Maternal education at follow up

      

 High school or less

84

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 Some college

81

− 0.06 (− 0.36, 0.24)

− 0.26 (− 0.56, 0.04)

0.15 (− 0.16, 0.45)

0.04 (− 0.25, 0.33)

0.07 (− 0.23, 0.37)

− 0.15 (− 0.46, 0.15)

0.55 (0.28, 0.82)

 Bachelor’s degree

45

− 0.16 (− 0.52, 0.21)

− 0.33 (− 0.69, 0.03)

0.18 (− 0.18, 0.54)

0.75 (0.40, 1.09)

0.46 (0.11, 0.82)

0.05 (− 0.31, 0.41)

1.18 (0.85, 1.50)

 Pr > χ2

 

0.70

0.11

0.51

< 0.01

0.03

0.47

< 0.01

Maternal age at delivery

      

 < 20

98

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 20–25

55

− 0.11 (− 0.44, 0.22)

0.01 (− 0.32, 0.34)

0.13 (− 0.20, 0.46)

0.09 (− 0.22, 0.40)

0.06 (− 0.26, 0.38)

− 0.22 (− 054, 0.11)

0.28 (− 0.04, 0.59)

 > 25

57

− 0.18 (− 0.50, 0.15)

− 0.31 (− 0.63, 0.02)

− 0.05 (− 0.38, 0.27)

0.70 (0.39, 1.01)

0.50 (0.18, 0.82)

− 0.16 (− 0.48, 0.17)

0.74 (0.43, 1.05)

 Pr > χ2

 

0.54

0.13

0.61

< 0.01

< 0.01

0.38

< 0.01

Maternal race

      

 Black or other race

57

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 White

31

0.01 (− 0.43, 0.44)

− 0.33 (− 0.76, 0.10)

0.07 (− 0.37, 0.50)

1.14 (0.74, 1.55)

0.30 (− 0.13, 0.74)

− 0.01 (− 0.45, 0.43)

1.05 (0.65, 1.44)

 Hispanic

122

0.22 (− 0.09, 0.53)

− 0.28 (− 0.59, 0.03)

− 0.04 (− 0.35, 0.28)

0.14 (− 0.15, 0.43)

− 0.00 (− 0.31, 0.31)

− 0.00 (− 0.31, 0.31)

− 0.25 (− 0.53, 0.03)

 Pr > χ2

 

0.29

0.16

0.87

< 0.01

0.29

0.99

< 0.01

Maternal smoking during pregnancy

      

 None

134

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 Any

28

− 0.53 (− 0.91, − 0.15)

− 0.31 (− 0.73, 0.10)

0.26 (− 0.14, 0.66)

0.02 (− 0.38, 0.43)

− 0.18 (− 0.59, 0.23)

− 0.23 (− 0.62, 0.17)

− 0.06 (− 0.44, 0.33)

 Pr > χ2

 

0.01

0.14

0.20

0.91

0.39

0.26

0.77

Maternal alcohol use during pregnancy

      

 None

132

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 Any

29

0.08 (− 0.32, 0.48)

− 0.07 (− 0.50, 0.35)

0.11 (− 0.30, 0.52)

0.68 (0.28, 1.09)

0.07 (− 0.35, 0.48)

− 0.01 (− 0.41, 0.39)

0.74 (0.36, 1.12)

 Pr > χ2

 

0.68

0.73

0.61

< 0.01

0.74

0.96

< 0.01

Maternal canned fish consumption during pregnancy

     

 < 1 times per week

145

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 1 or more times per week

22

− 0.16 (− 0.59, 0.27)

− 0.27 (− 0.73, 0.18)

0.24 (− 0.20, 0.68)

0.83 (0.40, 1.26)

0.36 (− 0.09, 0.80)

− 0.17 (− 0.61, 0.27)

0.32 (− 0.10, 0.74)

 Pr > χ2

 

0.47

0.24

0.29

< 0.01

0.12

0.45

0.14

 Child sex

       

 Male

100

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 Female

105

0.35 (0.08, 0.62)

− 0.11 (− 0.39, 0.16)

− 0.28 (− 0.55, 0.00)

− 0.27 (− 0.54, 0.00)

0.42 (0.15, 0.68)

0.40 (0.13, 0.67)

− 0.12 (− 0.39, 0.16)

 Pr > χ2

 

0.01

0.41

0.05

0.05

< 0.01

< 0.01

0.40

Gestational age

      

 Term birth

150

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 Preterm

60

0.28 (− 0.02, 0.57)

− 0.13 (− 0.43, 0.17)

− 0.34 (− 0.64, − 0.05)

− 0.19 (− 0.49, 0.10)

− 0.13 (− 0.43, 0.17)

− 0.15 (− 0.45, 0.14)

− 0.46 (− 0.75, − 0.16)

 Pr > χ2

 

0.07

0.38

0.02

0.20

0.39

0.31

< 0.01

Head circumference

      

 Centimeters, continuous

162

− 0.04 (− 0.14, 0.06)

− 0.12 (− 0.22, − 0.02)

0.04 (− 0.06, 0.14)

0.15 (0.05, 0.24)

0.00 (− 0.10, 0.10)

0.07 (− 0.03, 0.17)

0.06 (− 0.03, 0.16)

 Pr > χ2

 

0.43

0.02

0.47

< 0.01

0.99

0.17

0.19

Birth weight

      

 < median (< 3270 g)

76

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 ≥ Median (≥ 3270 g)

86

− 0.25 (− 0.55, 0.04)

− 0.10 (− 0.41, 0.22)

0.08 (− 0.23, 0.39)

0.21 (− 0.09, 0.52)

0.20 (− 0.11, 0.50)

0.19 (− 0.11, 0.49)

− 0.12 (− 0.41, 0.17)

 Pr > χ2

 

0.10

0.54

0.61

0.17

0.21

0.21

0.41

Birth length

        

 < Median (< 51 cm)

75

Referent

Referent

Referent

Referent

Referent

Referent

Referent

 ≥ Median(≥ 51 cm)

85

− 0.22 (− 0.52, 0.08)

− 0.17 (− 0.49, 0.14)

0.33 (0.02, 0.63)

0.17 (− 0.14, 0.48)

0.05 (− 0.27, 0.36)

− 0.02 (− 0.32, 0.29)

− 0.14 (− 0.44, 0.15)

 Pr > χ2

 

0.15

0.29

0.03

0.29

0.77

0.90

0.34

HOME observation for measurement of the environment scores

    

 Overall score continuous

156

0.00 (− 0.02, 0.03)

0.01 (− 0.01, 0.04)

0.01 (− 0.02, 0.04)

0.01 (− 0.02, 0.04)

0.04 (0.01, 0.06)

0.02 (0.00, 0.05)

0.01 (− 0.01, 0.04)

 Pr > χ2

 

0.94

0.37

0.48

0.44

< 0.01

0.07

0.33

 Responsivity ordinal categorical

156

0.04 (− 0.14, 0.22)

− 0.01 (− 0.20, 0.18)

0.12 (− 0.07, 0.30)

0.05 (− 0.14, 0.23)

0.13 (− 0.05, 0.31)

0.01 (− 0.17, 0.19)

0.15 (− 0.03, 0.32)

 Pr > χ2

 

0.64

0.89

0.21

0.63

0.15

0.88

0.09

 Involvement ordinal categorical

156

0.03 (− 0.16, 0.23)

− 0.04 (− 0.25, 0.16)

0.04 (− 0.16, 0.24)

0.22 (0.02, 0.42)

0.23 (0.04, 0.42)

0.09 (− 0.10, 0.29)

0.13 (− 0.06, 0.32)

 Pr > χ2

 

0.76

0.68

0.70

0.03

0.02

0.36

0.19

 Organization Ordinal categorical

156

− 0.11 (− 0.29, 0.07)

0.28 (0.09, 0.47)

0.21 (0.02, 0.39)

0.02 (− 0.17, 0.20)

0.28 (0.10, 0.46)

− 0.01 (− 0.19, 0.17)

0.00 (− 0.18, 0.18)

 Pr > χ2

 

0.24

< 0.01

0.03

0.86

< 0.01

0.94

0.99

 Learning materials ordinal categorical

156

0.01 (− 0.18, 0.20)

0.06 (− 0.14, 0.26)

0.11 (− 0.08, 0.31)

0.16 (− 0.03, 0.36)

0.06 (− 0.13, 0.26)

0.16 (− 0.03, 0.35)

0.22 (0.04, 0.41)

 Pr > χ2

 

0.89

0.54

0.26

0.10

0.52

0.10

0.02

 Acceptance ordinal categorical

156

0.07 (− 0.13, 0.26)

− 0.03 (− 0.24, 0.17)

0.01 (− 0.19, 0.21)

0.03 (− 0.17, 0.23)

0.18 (− 0.02, 0.37)

0.10 (− 0.10, 0.29)

0.11 (− 0.08, 0.30)

 Pr > χ2

 

0.51

0.77

0.95

0.79

0.08

0.32

0.25

 Variety ordinal categorical

156

0.00 (− 0.20, 0.19)

0.21 (0.00, 0.42)

0.16 (− 0.04, 0.36)

0.13 (− 0.08, 0.33)

0.22 (0.03, 0.42)

0.09 (− 0.11, 0.29)

0.10 (− 0.09, 0.30)

 Pr > χ2

 

0.97

0.05

0.12

0.22

0.03

0.37

0.31

  1. Characteristics presented for all participants who were included in the principal components analysis, where data is available
  2. Higher factor scores indicate better outcomes (e.g., less impulsivity/internalizing, lower levels of anxiety/internalizing behaviors, higher verbal intelligence)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furlong, M., Herring, A.H., Goldman, B.D. et al. Early Life Characteristics and Neurodevelopmental Phenotypes in the Mount Sinai Children’s Environmental Health Center. Child Psychiatry Hum Dev 49, 534–550 (2018). https://doi.org/10.1007/s10578-017-0773-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10578-017-0773-5

Keywords

Navigation