A database of amphibian karyotypes


One of the first characteristics that we learn about the genome of many species is the number of chromosomes it is divided among. Despite this, many questions regarding the evolution of chromosome number remain unanswered. Testing hypotheses of chromosome number evolution using comparative approaches requires trait data to be readily accessible and associated with currently accepted taxonomy. The lack of accessible karyotype data that can be linked to phylogenies has limited the application of comparative approaches that could help us understand the evolution of genome structure. Furthermore, for taxonomists, the significance of new karyotype data can only be determined with reference to records for other species. Here, we describe a curated database (karyotype.org) developed to facilitate access to chromosome number and sex chromosome system data for amphibians. The open web interface for this database allows users to generate customized exploratory plots and tables of selected clades, as well as downloading CSV files for offline analyses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


cf :

for the Latin conformis or conferre

aff :

for the Latin affinis


  1. Blackmon H, Demuth JP (2015) Genomic origins of insect sex chromosomes. Curr Opin Insect Sci 7:45–50

    Article  Google Scholar 

  2. Blackmon H, Hardy NB, Ross L (2015) The evolutionary dynamics of haplodiploidy: genome architecture and haploid viability. Evolution 69:2971–2978

    CAS  Article  Google Scholar 

  3. Blackmon H, Justison J, Mayrose I, Goldberg EE (2019) Meiotic drive shapes rates of karyotype evolution in mammals. Evolution 73:511–523

    Article  Google Scholar 

  4. Chang, W., Cheng, J., Allaire, J., Xie, Y. & Mcpherson, J. 2018. Shiny: web application framework for R version 1.1.0

    Google Scholar 

  5. Charlesworth D, Charlesworth B (1980) Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genet Res 35:205–214

    CAS  Article  Google Scholar 

  6. Fitzjohn RG (2012) Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol Evol 3:1084–1092

    Article  Google Scholar 

  7. Flemming, W. 1882. Zellsubstanz, kern und zelltheilung, Vogel

    Google Scholar 

  8. Freyman WA, Höhna S (2017) Cladogenetic and anagenetic models of chromosome number evolution: A Bayesian model averaging approach. Syst Biol 67:195–215

    Article  Google Scholar 

  9. Frost DR (2018) Amphibian species of the world: an online reference. Version 6. 11 July 2018. American Museum of Natural History

  10. Green DM, Sessions SK (1991) Amphibian cytogenetics and evolution. Academic Press, San Diego

    Google Scholar 

  11. Gregory TR (2001) The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cell Mol Dis 27:830–843

    CAS  Article  Google Scholar 

  12. Hillis DM (1991) The phylogeny of amphibians: current knowledge and the role of cytogenetics. Amphibian Cytogenet Evol:7–31

  13. Kezer J (1964) Meiosis in salamander spermatocytes. The meehanics of inheritance. Found Mod Genetics Series 100

  14. King M (1990) Animal cytogenetics: Amphibia. Gebruder Borntraeger, Berlin

    Google Scholar 

  15. Kitano J, Ross JA, Mori S, Kume M, Jones FC, Chan YF, Absher DM, Grimwood J, Schmutz J, Myers RM (2009) A role for a neo-sex chromosome in stickleback speciation. Nature 461:1079–1083

    CAS  Article  Google Scholar 

  16. Lande R (1985) The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity 54:323–332

    Article  Google Scholar 

  17. Liedtke HC, Gower DJ, Wilkinson M, Gomez-Mestre I (2018) Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. In: Nature Ecology & Evolution

    Google Scholar 

  18. Mohlhenrich ER, Mueller RL (2016) Genetic drift and mutational hazard in the evolution of salamander genomic gigantism. Evolution 70:2865–2878

    CAS  Article  Google Scholar 

  19. Morescalchi A (1973) Amphibia. In: Cytotaxonomy and vertebrate evolution, pp 233–347

    Google Scholar 

  20. Paradis E, Blomberg S, Bolker B, Brown J, Claude J, Cuong HS, Desper R, Didier G (2018) Package ‘ape’. In: Analyses of phylogenetics and evolution, version, vol 2, pp 4–1

    Google Scholar 

  21. Pennell MW, Kirkpatrick M, Otto SP, Vamosi JC, Peichel CL, Valenzuela N, Kitano J (2015) Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet 11:e1005237

    Article  Google Scholar 

  22. Rees JA, Cranston K (2017) Automated assembly of a reference taxonomy for phylogenetic data synthesis. Biodiversity Data J

  23. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  24. Ross L, Blackmon H, Lorite P, Gokhman V, Hardy N (2015) Recombination, chromosome number and eusociality in the hymenoptera. J Evol Biol 28:105–116

    CAS  Article  Google Scholar 

  25. Roth G, Blanke J, Wake DB (1994) Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc Natl Acad Sci 91:4796–4800

    CAS  Article  Google Scholar 

  26. Schmid M, Bogart J, Hedges S (2010) The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 130:1–568

    Article  Google Scholar 

  27. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343

    CAS  Article  Google Scholar 

  28. Sherman PW (1979) Insect chromosome numbers and Eusociality. Am Nat 113:925–935

    Article  Google Scholar 

  29. Sun C, Shepard DB, Chong RA, López Arriaza J, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL (2011) LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 4:168–183

    Article  Google Scholar 

  30. Sved JA, Chen Y, Shearman D, Frommer M, Gilchrist AS, Sherwin WB (2016) Extraordinary conservation of entire chromosomes in insects over long evolutionary periods. Evolution 70:229–234

    Article  Google Scholar 

  31. Voss SR, Kump DK, Putta S, Pauly N, Reynolds A, Henry R, Basa S, Walker JA, Smith JJ (2011) Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Res, gr 116491:110

    Google Scholar 

  32. White MJD (1977) Animal cytology & evolution. University Press, Cambridge

    Google Scholar 

  33. Zenil-Ferguson R, Burleigh JG, Ponciano JM (2018) Chromploid: an R package for chromosome number evolution across the plant tree of life. Appl Plant Sci 6:e1037

    Article  Google Scholar 

Download references

Author information




HB and RHA conceived of the database and developed the ontology used. HB and RP both contributed to writing the manuscript, and collection of records. Research towards name resolution was performed by all authors and all authors edited the manuscript.

Corresponding author

Correspondence to Heath Blackmon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Beth A. Sullivan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perkins, R.D., Gamboa, J.R., Jonika, M.M. et al. A database of amphibian karyotypes. Chromosome Res 27, 313–319 (2019). https://doi.org/10.1007/s10577-019-09613-1

Download citation


  • Amphibian
  • Chromosome number
  • Cytogenetic
  • Cytotaxonomy
  • Sex chromosome