Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A 95:13073–13078
CAS
Article
PubMed
PubMed Central
Google Scholar
Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD, Lai A, Rice M, Stack SM (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865
CAS
PubMed
PubMed Central
Google Scholar
Baldini A, Ried T, Shridhar V, Ogura K, Daiuto L, Rocchi M, Ward DC (1993) An alphoid DNA sequence conserved in all human and great ape chromosomes—evidence for ancient centromeric sequences at human chromosomal regions 2q21 and 9q13. Hum Genet 90:577–583
CAS
Article
PubMed
Google Scholar
Capozzi O, Purgato S, D'Addabbo P, Archidiacono N, Battaglia P, Baroncini A, Capucci A, Stanyon R, Della Valle G, Rocchi M (2009) Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago. Genome Res 19:778–784
CAS
Article
PubMed
PubMed Central
Google Scholar
Fu SL, Lv ZL, Gao Z, Wu HJ, Pang JL, Zhang B, Dong QH, Guo X, Wang XJ, Birchler JA, Han FP (2013) De novo centromere formation on a chromosome fragment in maize. Proc Natl Acad Sci U S A 110:6033–6036
CAS
Article
PubMed
PubMed Central
Google Scholar
Gong ZY, Wu YF, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang WL, Novak P, Buell CR, Macas J, Jiang JM (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574
CAS
Article
PubMed
PubMed Central
Google Scholar
Gong ZY, Yu HX, Huang J, Yi CD, Gu MH (2009) Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation. Chromosom Res 17:863–872
CAS
Article
Google Scholar
Guo X, Su HD, Shi QH, Fu SL, Wang J, Zhang XQ, Hu ZM, Han FP (2016) De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet 12:e1005997
Article
PubMed
PubMed Central
Google Scholar
Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20:3643–3646
CAS
Article
PubMed
Google Scholar
Han YH, Zhang ZH, Liu CX, Liu JH, Huang SW, Jiang JM, Jin WW (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci U S A 106:14937–14941
CAS
Article
PubMed
PubMed Central
Google Scholar
Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102
CAS
Article
PubMed
Google Scholar
Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, Kakuma T, Hiraoka Y, Takahashi K (2008) Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088–1091
CAS
Article
PubMed
Google Scholar
Jiang JM, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575
CAS
Article
PubMed
Google Scholar
Jiao YP, Peluso P, Shi JH, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei XH, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527
CAS
PubMed
Google Scholar
Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang JM (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581
CAS
Article
PubMed
PubMed Central
Google Scholar
Kalitsis P, Choo KHA (2012) The evolutionary life cycle of the resilient centromere. Chromosoma 121:327–340
CAS
Article
PubMed
Google Scholar
Ketel C, Wang HSW, McClellan M, Bouchonville K, Selmecki A, Lahav T, Gerami-Nejad M, Berman J (2009) Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet 5:e1000400
Article
PubMed
PubMed Central
Google Scholar
Koo DH, Han FP, Birchler JA, Jiang JM (2011) Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res 21:908–914
CAS
Article
PubMed
PubMed Central
Google Scholar
Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572
CAS
Article
PubMed
PubMed Central
Google Scholar
Kynast RG, Riera-Lizarazu O, Vales MI, Okagaki RJ, Maquieira SB, Chen G, Ananiev EV, Odland WE, Russell CD, Stec AO, Livingston SM, Zaia HA, Rines HW, Phillips RL (2001) A complete set of maize individual chromosome additions to the oat genome. Plant Physiol 125:1216–1227
CAS
Article
PubMed
PubMed Central
Google Scholar
Lamb JC, Meyer JM, Birchler JA (2007) A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma 116:237–247
CAS
Article
PubMed
Google Scholar
Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM http://arxiv.org/abs/1303.3997
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
Article
PubMed
PubMed Central
Google Scholar
Li Q, Song J, West PT, Zynda G, Eichten SR, Vaughn MW, Springer NM (2015) Examining the causes and consequences of context-specific differential DNA methylation in maize. Plant Physiol 168:1262–1274
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu YL, Su HD, Pang JL, Goo Z, Wang XJ, Birchler JA, Han FP (2015) Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Proc Natl Acad Sci U S A 112:E1263–E1271
CAS
Article
PubMed
PubMed Central
Google Scholar
Lyons E, Pedersen B, Kane J, Freeling M (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Trop Plant Biol 1:181–190
CAS
Article
Google Scholar
Marshall OJ, Chueh AC, Wong LH, Choo KHA (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Human Genet 82:261–282
CAS
Article
Google Scholar
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17:10–12
Article
Google Scholar
Nagaki K, Cheng ZK, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang JM (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145
CAS
Article
PubMed
Google Scholar
Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang JM (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225
CAS
PubMed
PubMed Central
Google Scholar
Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102:9842–9847
CAS
Article
PubMed
PubMed Central
Google Scholar
Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908
CAS
Article
PubMed
PubMed Central
Google Scholar
Rocchi M, Archidiacono N, Schempp W, Capozzi O, Stanyon R (2012) Centromere repositioning in mammals. Heredity 108:59–67
CAS
Article
PubMed
Google Scholar
Saffery R, Irvine DV, Griffiths B, Kalitsis P, Wordeman L, Choo KHA (2000) Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum Mol Genet 9:175–185
CAS
Article
PubMed
Google Scholar
Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci U S A 108:4069–4074
CAS
Article
PubMed
PubMed Central
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115
CAS
Article
PubMed
Google Scholar
Schneider KL, Xie ZD, Wolfgruber TK, Presting GG (2016) Inbreeding drives maize centromere evolution. Proc Natl Acad Sci U S A 113:E987–E996
CAS
Article
PubMed
PubMed Central
Google Scholar
Scott KC, Sullivan BA (2014) Neocentromeres: a place for everything and everything in its place. Trends Genet 30:66–74
CAS
Article
PubMed
Google Scholar
Shang WH, Hori T, Martins NMC, Toyoda A, Misu S, Monma N, Hiratani I, Maeshima K, Ikeo K, Fujiyama A, Kimura H, Earnshaw WC, Fukagawa T (2013) Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev Cell 24:635–648
CAS
Article
PubMed
PubMed Central
Google Scholar
Stadler LJ, Roman H (1948) The effect of X-rays upon mutation of the gene A in maize. Genetics 33:273–303
CAS
PubMed
PubMed Central
Google Scholar
Sullivan BA, Schwartz S (1995) Identification of centromeric antigens in dicentric robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Human Mol Genet 4:2189–2197
CAS
Article
Google Scholar
Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923
CAS
Article
PubMed
PubMed Central
Google Scholar
Thakur J, Sanyal K (2013) Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res 23:638–652
CAS
Article
PubMed
PubMed Central
Google Scholar
Tolomeo D, Capozzi O, Stanyon RR, Archidiacono N, D'Addabbo P, Catacchio CR, Purgato S, Perini G, Schempp W, Huddleston J, Malig M, Eichler EE, Rocchi M (2017) Epigenetic origin of evolutionary novel centromeres. Sci Rep-Uk 7:41980
CAS
Article
Google Scholar
Topp CN, Okagaki RJ, Melo JR, Kynast RG, Phillips RL, Dawe RK (2009) Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res 124:228–238
CAS
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111
CAS
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515
CAS
Article
PubMed
PubMed Central
Google Scholar
Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, Pierluigi M, Giorda R, Zuffardi O, Archidiacono N, Jackson MS, Rocchi M (2003) Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13:2059–2068
CAS
Article
PubMed
PubMed Central
Google Scholar
Ventura M, Weigl S, Carbone L, Cardone MF, Misceo D, Teti M, D'Addabbo P, Wandall A, Bjorck E, de Jong PJ, She XW, Eichler EE, Archidiacono N, Rocchi M (2004) Recurrent sites for new centromere seeding. Genome Res 14:1696–1703
CAS
Article
PubMed
PubMed Central
Google Scholar
Voullaire LE, Slater HR, Petrovic V, Choo KHA (1993) A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52:1153–1163
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Bennetzen JL (2012) Centromere retention and loss during the descent of maize from a tetraploid ancestor. Proc Natl Acad Sci U S A 109:21004–21009
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang K, Wu YF, Zhang WL, Dawe RK, Jiang JM (2014) Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res 24:107–116
Article
PubMed
PubMed Central
Google Scholar
Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:1254–1263
CAS
Article
Google Scholar
Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo DH, Shi JH, Gao Z, Han FP, Lee H, Xu RH, Allison J, Birchler JA, Jiang JM, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5:e1000743
Article
PubMed
PubMed Central
Google Scholar
Yunis JJ, Prakash O (1982) The origin of man—a chromosomal pictorial legacy. Science 215:1525–1530
CAS
Article
PubMed
Google Scholar
Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25:1952–1958
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang B, Lv ZL, Pang JL, Liu YL, Guo X, Fu SL, Li J, Dong QH, Wu HJ, Gao Z, Wang XJ, Han FP (2013) Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Plant Cell 25:1979–1989
Article
PubMed
PubMed Central
Google Scholar
Zhang HQ, Koblizkova A, Wang K, Gong ZY, Oliveira L, Torres GA, Wu YF, Zhang WL, Novak P, Buell CR, Macas J, Jiang JM (2014) Boom-bust turnovers of megabase-sized centromeric DNA in Solanum species: rapid evolution of DNA sequences associated with centromeres. Plant Cell 26:1436–1447
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao HN, Zhu XB, Wang K, Gent JI, Zhang WL, Dawe RK, Jiang JM (2016) Gene expression and chromatin modifications associated with maize centromeres. G3 6:183-192
Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang JM, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836
CAS
Article
PubMed
PubMed Central
Google Scholar