Advertisement

Chromosome Research

, Volume 25, Issue 2, pp 89–100 | Cite as

Proliferating cell nuclear antigen (PCNA) contributes to the high-order structure and stability of heterochromatin in Saccharomyces cerevisiae

  • Xin BiEmail author
  • Yue Ren
  • Morgan Kath
Original Article
  • 421 Downloads

Abstract

Heterochromatin plays important roles in the structure, maintenance, and function of the eukaryotic genome. It is associated with special histone modifications and specialized non-histone proteins and assumes a more compact structure than euchromatin. Genes embedded in heterochromatin are generally transcriptionally silent. It was found previously that several mutations of proliferating cell nuclear antigen (PCNA), a DNA replication processivity factor, reduce transcriptional silencing at heterochromatin loci in Saccharomyces cerevisiae. However, the notion that PCNA plays a role in transcriptional silencing was recently questioned because of a potential problem concerning the silencing assays used in prior studies. To determine if PCNA is a bona fide contributor to heterochromatin-mediated transcriptional silencing, we examined the effects of PCNA mutations on heterochromatin structure. We found evidence implicating PCNA in the maintenance of the high-order structure and stability of heterochromatin, which indicates a role of DNA replication in heterochromatin maintenance.

Keywords

Proliferating cell nuclear antigen (PCNA) heterochromatin high order structure heterochromatin stability DNA supercoiling 

Abbreviations

PCNA

Proliferating cell nuclear antigen

Notes

Acknowledgements

We thank Dr. Peter Burgers for providing us with pBL230 and pBL230-x plasmids encoding wild-type and mutant PCNA alleles and Dr. Zhiguo Zhang for yeast strains ZGY005, ZGY005-6, ZGY005-8, ZGY005-9, and ZGY005-79. We also thank Hiram Lyon for assistance in performing sucrose gradient assay. This work was supported by NSF grant MCB-1158008 to X.B.

Supplementary material

10577_2016_9540_MOESM1_ESM.pdf (1.2 mb)
Fig. S1 (PDF 1262 kb)

References

  1. Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ayyagari R, Impellizzeri KJ, Yoder BL, Gary SL, Burgers PM (1995) A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol 15:4420–4429CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bi X (2014) Heterochromatin structure: lessons from the budding yeast. IUBMB Life 66:657–666CrossRefPubMedGoogle Scholar
  4. Bi X, Broach JR (1997) DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression. Mol Cell Biol 17:7077–7087CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bi X, Yu Q, Sandmeier JJ, Elizondo S (2004) Regulation of transcriptional silencing in yeast by growth temperature. J Mol Biol 344:893–905CrossRefPubMedGoogle Scholar
  6. Cheng TH, Li YC, Gartenberg MR (1998) Persistence of an alternate chromatin structure at silenced loci in the absence of silencers. Proc Natl Acad Sci U S A 95:5521–5526CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dillon N (2004) Heterochromatin structure and function. Biol Cell 96:631–637CrossRefPubMedGoogle Scholar
  8. Ehrenhofer-Murray AE, Kamakaka RT, Rine J (1999) A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 153:1171–1182PubMedPubMedCentralGoogle Scholar
  9. Eissenberg JC, Ayyagari R, Gomes XV, Burgers PM (1997) Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol Cell Biol 17:6367–6378CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141CrossRefPubMedGoogle Scholar
  11. Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233–1243CrossRefPubMedGoogle Scholar
  12. Kueng S, Oppikofer M, Gasser SM (2013) SIR proteins and the assembly of silent chromatin in budding yeast. Annu Rev Genet 47:275–306CrossRefPubMedGoogle Scholar
  13. Li Q, Zhang Z (2012) Linking DNA replication to heterochromatin silencing and epigenetic inheritance. Acta Biochim Biophys Sin Shanghai 44:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  14. Miller A, Yang B, Foster T, Kirchmaier AL (2008) Proliferating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3. Genetics 179:793–809CrossRefPubMedPubMedCentralGoogle Scholar
  15. Miller A, Chen J, Takasuka TE, Jacobi JL, Kaufman PD, Irudayaraj JM, Kirchmaier AL (2010) Proliferating cell nuclear antigen (PCNA) is required for cell cycle-regulated silent chromatin on replicated and nonreplicated genes. J Biol Chem 285:35142–35154CrossRefPubMedPubMedCentralGoogle Scholar
  16. Moggs JG, Grandi P, Quivy JP, Jónsson ZO, Hübscher U, Becker PB, Almouzni G (2000) ACAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 20:1206–1218CrossRefPubMedPubMedCentralGoogle Scholar
  17. Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679CrossRefPubMedGoogle Scholar
  18. Norton VG, Imai BS, Yau P, Bradbury EM (1989) Histone acetylation reduces nucleosome core particle linking number change. Cell 57:449–457CrossRefPubMedGoogle Scholar
  19. Rossmann MP, Luo W, Tsaponina O, Chabes A, Stillman B (2011) A common telomeric gene silencing assay is affected by nucleotide metabolism. Mol Cell 42:127–136CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516CrossRefPubMedGoogle Scholar
  21. Sharp JA, Fouts ET, Krawitz DC, Kaufman PD (2001) Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 11:463–473CrossRefPubMedGoogle Scholar
  22. Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–585CrossRefPubMedGoogle Scholar
  23. Simpson RT, Thoma F, Brubaker JM (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42:799–808CrossRefPubMedGoogle Scholar
  24. Sperling AS, Grunstein M (2009) Histone H3 N-terminus regulates higher order structure of yeast heterochromatin. Proc Natl Acad Sci U S A 106:13153–13159CrossRefPubMedPubMedCentralGoogle Scholar
  25. Takahashi YH, Schulze JM, Jackson J, Hentrich T, Seidel C, Jaspersen SL, Kobor MS, Shilatifard A (2011) Dot1 and histone H3K79 methylation in natural telomeric and HM silencing. Mol Cell 42:118–126CrossRefPubMedPubMedCentralGoogle Scholar
  26. Thurtle DM, Rine J (2014) The molecular topography of silenced chromatin in Saccharomyces cerevisiae. Genes Dev 28:245–258CrossRefPubMedPubMedCentralGoogle Scholar
  27. van Leeuwen F, Gottschling DE (2002) Assays for gene silencing in yeast. Methods Enzymol 350:165–186CrossRefPubMedGoogle Scholar
  28. Xu EY, Bi X, Holland MJ, Gottschling DE, Broach JR (2005) Mutations in the nucleosome core enhance transcriptional silencing. Mol Cell Biol 25:1846–1859CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yu Q, Olsen L, Zhang X, Boeke JD, Bi X (2011a) Differential contributions of histone H3 and H4 residues to heterochromatin structure. Genetics 188:291–308CrossRefPubMedPubMedCentralGoogle Scholar
  30. Yu Q, Zhang X, Bi X (2011b) Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure. J Biol Chem 286:14659–14669CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhang Z, Shibahara K, Stillman B (2000) PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408:221–225CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of BiologyUniversity of RochesterRochesterUSA

Personalised recommendations