Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH

Abstract

Tandemly repetitive DNA sequences, also named satellite repeats, are major DNA components of heterochromatin and are often organized as long arrays in the pericentromeric, centromeric, and subtelomeric regions of eukaryotic chromosomes. An increasing amount of evidence indicates that transcripts derived from some satellite repeats play important roles in various biological functions. We used a RNA-fluorescence in situ hybridization (RNA-FISH) technique to investigate the transcription of the four well-characterized satellite repeats of maize (Zea mays), including the 180-bp knob repeat, the telomeric (TTTAGGG)n repeat, the 156-bp centromeric repeat CentC, and a 350-bp subtelomeric repeat. Although few transcripts derived from these four repeats were found in the expressed sequence tag and RNA-seq databases, RNA-FISH consistently detected the transcripts from three of the four repeats on interphase nuclei, suggesting that the transcripts from the three repeats are largely integrated into chromatin. The transcripts from the knob and telomeric repeats were mapped to the related DNA loci. In contrast, the transcripts from the CentC repeats were mainly localized to the nucleolus, although nucleoplasmic CentC transcripts were also detectable. The nucleolus and nuclear RNAs appeared to be important for the nuclear localization for at least one centromeric protein, Mis12. We demonstrate that RNA-FISH is a powerful tool to assess the level of transcription as well as to physically map the nuclear locations of the transcripts derived from satellite repeats.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

CENP:

Centromere protein

EST:

Expressed sequence tags

FISH:

Fluorescence in situ hybridization

TERRA:

Telomeric repeat-containing RNA

References

  1. Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci 95:13073–13078

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    CAS  Article  PubMed  Google Scholar 

  3. Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosom Res 23:463–477

    CAS  Article  Google Scholar 

  4. Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Nat Acad Sci USA 103:8709–8714

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Burr B, Burr FA, Matz EC, Romeroseverson J (1992) Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell 4:953–960

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, et al. (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Nat Acad Sci USA 109:1979–1984

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46

    CAS  Article  PubMed  Google Scholar 

  8. Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, et al. (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–737

    CAS  Article  PubMed  Google Scholar 

  9. Cheng ZK, Stupar RM, Gu MH, Jiang JM (2001) A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma 110:24–31

    CAS  Article  PubMed  Google Scholar 

  10. Chun Y, Park B, Koh W, Lee S, Cheon Y, et al. (2011) New centromeric component CENP-W is an RNA-associated nuclear matrix protein that interacts with nucleophosmin/B23 protein. J Biol Chemi 286:42758–42769

    CAS  Article  Google Scholar 

  11. Cox KH, Deleon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101:485–502

    CAS  Article  PubMed  Google Scholar 

  12. Du YQ, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single stranded RNA. PLoS Genet 6:e1000835

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, et al. (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37:6340–6354

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosom Res 13:469–479

    CAS  Article  Google Scholar 

  15. Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, et al. (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    CAS  Article  PubMed  Google Scholar 

  17. Gall JG, Atherton DD (1974) Satellite DNA sequences in Drosophila virilis. J Mol Biol 85:633–664

    CAS  Article  PubMed  Google Scholar 

  18. Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenetic Genome Res 146:153–170

    CAS  Article  Google Scholar 

  19. Gaubatz JW, Cutler RG (1990) Mouse satellite DNA is transcribed in senescent cardiac muscle. J Biol Chemi 265:17753–17758

    CAS  Google Scholar 

  20. Grewal SIS, Elgin SCR (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. He L, Liu J, Torres GA, Zhang HQ, Jiang JM, et al. (2013) Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosom Res 21:5–13

    CAS  Article  Google Scholar 

  22. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    CAS  Article  PubMed  Google Scholar 

  23. Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    CAS  Article  PubMed  Google Scholar 

  24. Highett MI, Beven AF, Shaw PJ (1993) Localization of 5S genes and transcripts in Pisum sativum nuclei. J Cell Sci 105:1151–1158

    CAS  PubMed  Google Scholar 

  25. Jiang JM, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    CAS  Article  PubMed  Google Scholar 

  26. Jiang JM, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    CAS  Article  PubMed  Google Scholar 

  27. Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, et al. (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Jolly C, Mongelard F, RobertNicoud M, Vourch C (1997) Optimization of nuclear transcript detection by FISH and combination with fluorescence immunocytochemical detection of transcription factors. J Histochemi & Cytochemi 45:1585–1592

    CAS  Article  Google Scholar 

  29. Jolly C, Metz A, Govin J, Vigneron M, Turner BM, et al. (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kloc A, Zaratiegui M, Nora E, Martienssen R (2008) RNA interference guides histone modification during the S phase of chromosomal replication. Curr Biol 18:490–495

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Lee HR, Neumann P, Macas J, Jiang JM (2006) Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23:2505–2520

    CAS  Article  PubMed  Google Scholar 

  32. Li XX, Dawe RK (2009) Fused sister kinetochores initiate the reductional division in meiosis I. Nat Cell Biol 11:1103–1108

    CAS  Article  PubMed  Google Scholar 

  33. Li J, Yang F, Zhu J, He SB, Li LJ (2009) Characterization of a tandemly repeated subtelomeric sequence with inverted telomere repeats in maize. Genome 52:286–293

    CAS  Article  PubMed  Google Scholar 

  34. Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle-regulated transcription of mouse pericentric heterochromatin. J Cell Biol 179:411–421

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28:2503–2510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Maison C, Bailly D, Peters AHFM, Quivy JP, Roche D, et al. (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334

    Article  PubMed  Google Scholar 

  37. Majerova E, Fojtova M, Mozgova I, Bittova M, Fajkus J (2011) Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells. Plant Mol Biol 77:371–380

    CAS  Article  PubMed  Google Scholar 

  38. May BP, Lippman ZB, Fang YD, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:705–714

    CAS  Article  Google Scholar 

  39. McClintock B (1929) Chromosome morphology in Zea mays. Science 69:629

    CAS  Article  PubMed  Google Scholar 

  40. McKnight TD, Riha K, Shippen DE (2002) Telomeres, telomerase, and stability of the plant genome. Plant Mol Biol 48:331–337

    CAS  Article  PubMed  Google Scholar 

  41. Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Nat Acad Sci USA 78:4490–4494

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Pezer Z, Ugarkovic D (2012) Satellite DNA-associated siRNAs as mediators of heat shock response in insects. RNA Biol 9:587–595

    CAS  Article  PubMed  Google Scholar 

  43. Pontes O, Li CF, Nunes PC, Haag J, Ream T, et al. (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92

    CAS  Article  PubMed  Google Scholar 

  44. Pontes O, Costa-Nunes P, Vithayathil P, Pikaard CS (2009) RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Mol Plant 2:700–710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Prieto P, Moore G, Shaw P (2007) Fluorescence in situ hybridization on vibratome sections of plant tissues. Nat Protoc 2:1831–1838

    CAS  Article  PubMed  Google Scholar 

  46. Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, et al. (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19:625–638

    CAS  Article  PubMed  Google Scholar 

  47. Rivin CJ, Cullis CA, Walbot V (1986) Evaluating quantitative variation in the genome of Zea mays. Genetics 113:1009–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, et al. (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  Article  PubMed  Google Scholar 

  51. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236

    CAS  Article  PubMed  Google Scholar 

  52. Sippel AE, Hynes N, Groner B, Schutz G (1977) Frequency distribution of messenger sequences within polysomal messenger RNA and nuclear RNA from rat liver. Eur J Biochem 77:141–151

    CAS  Article  PubMed  Google Scholar 

  53. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, et al. (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Trofimova I, Popova D, Vasilevskaya E, Krasikova A (2014) Non-coding RNA derived from a conservative subtelomeric tandem repeat in chicken and Japanese quail somatic cells. Mol Cytogenet 7:102

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, et al. (2010) siRNA-mediated methylation of I telomeres. PLoS Genet 6:e1000986

    Article  PubMed  PubMed Central  Google Scholar 

  58. Werner MS, Ruthenburg AJ (2015) Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep 12:1089–1098

    CAS  Article  PubMed  Google Scholar 

  59. Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, et al. (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Wu TY, Wang YX, Wu R (1994) Transcribed repetitive DNA-sequences in telomeric regions of rice (Oryza sativa). Plant Mol Biol 26:363–375

    CAS  Article  PubMed  Google Scholar 

  61. Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, et al. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, et al. (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–184

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants IOS-0922703 and IOS-1444514 from the National Science Foundation to J.J.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiming Jiang.

Additional information

Responsible Editor: Hans de Jong

Electronic supplementary material

ESM 1

(PDF 1979 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koo, D., Zhao, H. & Jiang, J. Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH. Chromosome Res 24, 467–480 (2016). https://doi.org/10.1007/s10577-016-9537-5

Download citation

Keywords

  • Satellite repeat
  • Transcription
  • Centromere
  • Telomere
  • Heterochromatin
  • RNA-FISH
  • Zea mays