Skip to main content

Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses

Abstract

Like other eukaryotes, the nuclear genome of plants consists of DNA with a small proportion of low-copy DNA (genes and regulatory sequences) and very abundant DNA sequence motifs that are repeated thousands up to millions of times in the genomes including transposable elements (TEs) and satellite DNA. Retrotransposons, one class of TEs, are sequences that amplify via an RNA intermediate and reinsert into the genome, are often the major fraction of a genome. Here, we put research on retrotransposons into the larger context of plant repetitive DNA and genome behaviour, showing features of genome evolution in a grass genus, Brachiaria, in relation to other plant species. We show the contrasting amplification of different retroelement fractions across the genome with characteristics for various families and domains. The genus Brachiaria includes both diploid and polyploid species, with similar chromosome types and chromosome basic numbers x = 6, 7, 8 and 9. The polyploids reproduce asexually and are apomictic, but there are also sexual species. Cytogenetic studies and flow cytometry indicate a large variation in DNA content (C-value), chromosome sizes and genome organization. In order to evaluate the role of transposable elements in the genome and karyotype organization of species of Brachiaria, we searched for sequences similar to conserved regions of TEs in RNAseq reads library produced in Brachiaria decumbens. Of the 9649 TE-like contigs, 4454 corresponded to LTR-retrotransposons, and of these, 79.5 % were similar to members of the gypsy superfamily. Sequences of conserved protein domains of gypsy were used to design primers for producing the probes. The probes were used in FISH against chromosomes of accesses of B. decumbens, Brachiaria brizantha, Brachiaria ruziziensis and Brachiaria humidicola. Probes showed hybridization signals predominantly in proximal regions, especially those for retrotransposons of the clades CRM and Athila, while elements of Del and Tat exhibited dispersed signals, in addition to those proximal signals. These results show that the proximal region of Brachiaria chromosomes is a hotspot for retrotransposon insertion, particularly for the gypsy family. The combination of high-throughput sequencing and a chromosome-centric cytogenetic approach allows the abundance, organization and nature of transposable elements to be characterized in unprecedented detail. By their amplification and dispersal, retrotransposons can affect gene expression; they can lead to rapid diversification of chromosomes between species and, hence, are useful for studies of genome evolution and speciation in the Brachiaria genus. Centromeric regions can be identified and mapped, and retrotransposon markers can also assisting breeders in the developing and exploiting interspecific hybrids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

PBS:

Primer binding site

PR:

Protease

RT:

Reverse transcriptase

RT-Athila :

Reverse transcriptase of Athila lineage

RT-CRM :

Reverse transcriptase of CRM lineage

RT-Tat :

Reverse transcriptase of Tat lineage

RNAse H:

Ribonuclease H

INT:

Integrase

IRAP:

Inter-retroelement amplified polymorphism

PPT:

Polypurine tract

LTRs:

Long terminal repeats

LTR-RTs:

Retrotransposons with LTR

TEs:

Transposable elements

POL:

Polygenic string

FISH:

Fluorescent in situ hybridization

CRM:

Centromere-specific retrotransposons of Maize

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141. doi:10.1016/j.pbi.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  • Akiyama Y, Yamada‐Akiyama H, Ebina M (2010) Morphological diversity of chromosomes bearing ribosomal DNA loci in Brachiaria species. Grassl Sci 56(4):217–223

    Article  Google Scholar 

  • Alsayied NF, Fernández JA, Schwarzacher T, Heslop-Harrison JS (2015) Diversity and relationships of Crocus sativus and its relatives analysed by inter-retroelement amplified polymorphism (IRAP). Ann Bot 116:359–368

    Article  PubMed  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:19.1–19.26. doi:10.1146/annurev-arplant-050213-035811

    Article  Google Scholar 

  • Bertioli DJ, Vidigal B, Nielen S, Ratnaparkhe MB, Lee T-JH, Leal-Bertioli SCM, Kim C, Guimaraes PM, Seijo G, Schwarzacher T, Paterson AH, Heslop-Harrison P, Araujo ACG (2013) The repetitive component of the a genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome. Ann Bot 112(3):545–559. doi:10.1093/aob/mct128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boldrini KR, Micheletti PL, Gallo PH, Mendes-Bonato AB, Pagliarini MS, Valle CB (2009) Origin of a polyploid accession of Brachiaria humidicola (Poaceae: Panicoideae: Paniceae). Genet Mol Res 8:888–895

    Article  CAS  PubMed  Google Scholar 

  • Casacuberta E, González J (2013) The impact of transposable elements in environmental adaptation. Mol Ecol 22:1503–1517

    Article  CAS  PubMed  Google Scholar 

  • Chavanne F, Zhang D, Liaud M, Cerff R (1998) Structure and evolution of cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol Biol 37:363–375. doi:10.1023/A:1005969626142

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672

    PubMed Central  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury J-M, Baurens, FC, Carreel F, Garsmeur O, … & Jaillon O (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213–217

  • Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F (2014) Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 15(12):546. doi:10.1186/s13059-014-0546-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Edgar (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Hou Y, Ebina H, Levin HL, Voytas DF (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18:359–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao D, Jiang N, Wing RA, Jiang J, Jackson SA (2015) Transposons play an important role in the evolution and diversification of centromeres among closely related species. Frontiers in plant science 6:216

  • Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8(21):4851–4865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gorinšek B, Gubenšek F, Kordiš D (2004) Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21(5):781–798

    Article  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gregory RT (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95:133–146. doi:10.1093/aob/mci009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777. doi:10.1055/s-2006-924101

    Article  CAS  PubMed  Google Scholar 

  • Hansen CN, Heslop-Harrison JS (2004) Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Adv Bot Res 41:165–193

    Article  CAS  Google Scholar 

  • Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T (2014) Profiling of extensively diversified plant LINEs reveals distinct plant‐specific subclades. Plant J 79:385–397

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS (2012) Genome evolution: extinction, continuation or explosion? Curr Opin Plant Biol 15:115–121

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schmidt T (2012) Plant nuclear genome composition. In: Encyclopedia of life sciences. eLS 2012. Wiley, Chichester. doi:10.1002/9780470015902.a0002014.pub2, http://www.els.net/

    Google Scholar 

  • Heslop-Harrison JS, Brandes A, Schwarzacher T (2003) Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosom Res 11:241–253

    Article  CAS  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Janicki M, Rooke R, Yang G (2011) Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosom Res 19:787–808. doi:10.1007/s10577-011-9230-7

    Article  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1–4):462–467

    Article  CAS  PubMed  Google Scholar 

  • Kamm A, Doudrick RL, Heslop-Harrison JS, Schmidt T (1996) The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc Natl Acad Sci 93:2708–2713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant Transposable Elements: Biology and Evolution, Wendel JF et al. (eds.), Plant Genome Diversity Volume 1

  • Kuipers AGJ, Heslop-Harrison JS, Jacobsen E (1998) Characterisation and physical localisation of Ty1-copia-like retrotransposons in four Alstroemeria species. Genome 41:357–367

    Article  CAS  PubMed  Google Scholar 

  • Lerat E (2010) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104:520–533. doi:10.1038/hdy.2009.165

    Article  CAS  PubMed  Google Scholar 

  • Lisch D, Bennetzen JL (2011) Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol 14:156–161. doi:10.1016/j.pbi.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  • Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A (2009) Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 4:41. doi:10.1186/1745-6150-4-41

    Article  PubMed Central  PubMed  Google Scholar 

  • Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, Aguilar-Rodriguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, LaTorre A, Moya A (2011) The gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res (NARESE) 39(suppl 1):D70–D74. doi:10.1093/nar/gkq1061

    Article  CAS  Google Scholar 

  • Ma X-F, Gustafson JP (2008) Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot 101:825–832

    Article  PubMed Central  PubMed  Google Scholar 

  • Mendes-Bonato AB, Pagliarini MS, Forli F, Valle CB, de Oliveira Penteado MI (2002) Chromosome numbers and microsporogenesis in Brachiaria brizantha (Gramineae). Euphytica 125(3):419–425

    Article  Google Scholar 

  • Menzel G, Heitkam T, Seibt KM, Nouroz F, Müller-Stoerme M, Heslop-Harrison JS, Schmidt T (2015) The diversification and activity of hAT transposons in Musa genomes. Chromosom Res 22:559–571. doi:10.1007/s10577-014-9445-5

    Article  Google Scholar 

  • Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855. doi:10.1093/molbev/msi069

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Miranda CH, Ohwaki Y, Valéio JR, Kim Y, Macedo M (2005) Characterization of nitrogen utilization by Brachiaria grasses in Brazilian Savannas (Cerrados). Soil Sci Plant Nutr 51(7):973–979

    Article  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu LS, Gilbert D, Marçais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JF, Lorenz WW, Whetten W, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, de Jong PJ, Yorke JA, Salzberg SL, Langley CH (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 4;15(3):R59

    Article  Google Scholar 

  • Nielen S, Almeida LM, Carneiro VT, Araujo ACG (2010) Physical mapping of rDNA genes corroborates allopolyploid origin in apomictic Brachiaria brizantha. Sex Plant Reprod 23(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Nouroz F, Shumaila N, Heslop-Harrison JS (2015) Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica. Mol Gen Genomics. doi:10.1007/s00438-015-1076-9

    Google Scholar 

  • Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45

    Article  CAS  PubMed  Google Scholar 

  • Pearce SR, Li D, Flavell AJ, Harrison G, Heslop-Harrison JS, Kumar A (1996) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet MGG 250:305–315

    CAS  PubMed  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15. doi:10.1111/j.1095-8339.2010.01072.x

    Article  Google Scholar 

  • Pereira V (2004) Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol 5(10):R79

    Article  PubMed Central  PubMed  Google Scholar 

  • Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Botf 101(10):1711–1725

    Article  Google Scholar 

  • Renvoize SA, Clayton WD, Kabuye CH (1996) Morphology, taxonomy, and natural distribution of Brachiaria (Trin.) Griseb. In: Brachiaria: biology, agronomy, and improvement CIAT publication no. 259. Miles JW, Maass BL, Valle CB, Kumble V (eds.) CIAT, Campo Grande, Brazil

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Oxford: Bios. 203 + xii pp

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 36:365–376

    Article  CAS  PubMed  Google Scholar 

  • VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verde I et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494. doi:10.1038/ng.2586

    Article  CAS  PubMed  Google Scholar 

  • Vicient CM, Jääskeläinen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768. doi:10.1038/nature08747

    Article  CAS  Google Scholar 

  • Weber B, Schmidt T (2009) Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosom Res 17(3):379–396

    Article  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen J, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, San-Miguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. doi:10.1038/nrg2165

    Article  CAS  PubMed  Google Scholar 

  • Willing EM, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJ, … & Schneeberger K (2015) Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 1(2) Article number: 14023

  • Zhong CX, Marshalla JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836. doi:10.1105/tpc.006106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zonneveld BJM (2010) New record holders for maximum genome size in eudicots and monocots. J Bot 2010, 527357. doi:10.1155/2010/527357, 4 pages

    Google Scholar 

  • Zou J, Fu D, Gong H, Qian W, Xia W, Pires JC, Li RY, Long Y, Mason AS, Yang T, Lim YP, Park BS, Meng J (2011) De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. Plant J 68:212–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian agencies Fundação Araucária, CNPq and CAPES for financial support. JSHH thanks IAEA-FAO for support via Cooperative Research Programme D23029 Climate Proofing of Food Crops: Genetic Improvement for Adaptation to High Temperatures in Drought Prone Areas and Beyond.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pat Heslop-Harrison or André Luís Laforga Vanzela.

Additional information

Responsible Editors: Maria Assunta Biscotti and Ettore Olmo

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, F.C., Guyot, R., do Valle, C.B. et al. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosome Res 23, 571–582 (2015). https://doi.org/10.1007/s10577-015-9492-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9492-6

Keywords

  • centromeres
  • retrotransposons
  • FISH
  • in situ hybridization
  • metaviridae
  • grasses
  • genomics
  • genome organization
  • transposons
  • transposable elements
  • genetics
  • repetitive DNA
  • chromosomes