Skip to main content

The puzzling character of repetitive DNA in Phodopus genomes (Cricetidae, Rodentia)


Three novel repetitive DNA sequences are described, presenting a similar heterochromatic chromosomal location in two hamster species: Phodopus roborovskii and Phodopus sungorus (Cricetidae, Rodentia). Namely, two species-specific repetitive sequences (PROsat from P. roborovskii and PSUchr1sat from P. sungorus) surrounding a third one (PsatDNA), that is shared by both hamster genomes. Fiber-FISH analyses revealed that PROsat intermingles with PsatDNA in P. roborovskii and PSUchr1sat intermingles with PsatDNA in P. sungorus. A model explaining the evolution of this intricate chromosomal distribution is proposed, which can explain better the evolution of these very derivative genomes (in comparison to the ancestral Muroidea). The most plausible evolutionary scenario seems to be the expansion of a number of repeats into other’s domain, most probably resulting in its intermingling, followed by the subsequent spread of these complex repeats from a single chromosomal location to other chromosomes. Evidences of an association between repetitive sequences and the chromosome evolution process were observed, namely for PROsat. Most probably, the evolutionary breakpoints that shaped PRO and PSU chromosomes (pericentric inversions and fusions) occurred within the boundaries of PROsat blocks in the ancestor. The repeats high diversity at the heterochromatic regions of Phodopus chromosomes, together with its complex organization, suggests that these species are important models for evolutionary studies, namely in the investigation of a possible relationship between repetitive sequences and the occurrence of chromosomal rearrangements and consequently, in genome evolution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



3′ untranslated region


5′ Carboxytetramethylrhodamine


Ancestral Phodopus Karyotype


Basic Local Alignment Search Tool


C-bands by barium hydroxide with propidium iodide


Cricetus cricetus


European Molecular Biology Open Software Suite


FISH on stretched chromatin fibers


fluorescent in situ hybridization


fluorescein isothiocyanate


long interspersed nuclear element-1


National Center for Biotechnology Information


open reading frame 2


polymerase chain reaction


Peromyscus eremicus


Phodopus roborovskii


Phodopus roborovskii satellite


Phodopus satellite DNA


Phodopus sungorus


Phodopus sungorus chromosome 1 satellite


restriction enzymes


Rattus norvegicus


Satellite DNAs


  1. Adega F, Guedes-Pinto H, Chaves R (2009) Satellite DNA in the karyotype evolution of domestic animals—clinical considerations. Cytogenet Genome Res 126:12–20

    CAS  Article  PubMed  Google Scholar 

  2. Batistoni R, Pesole G, Marracci S, Nardi I (1995) A tandemly repeated DNA family originated from SINE-related elements in the european plethodontid salamanders (amphibia, urodela). J Mol Evol 40:608–615

    CAS  Article  PubMed  Google Scholar 

  3. Belyayev A (2014) Bursts of transposable elements as an evolutionary driving force. J Evol Biol 27(12):2573–84

    CAS  Article  PubMed  Google Scholar 

  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. Biscotti MA, Canapa A, Olmo E et al (2007) Repetitive DNA, molecular cytogenetics and genome organization in the King scallop (Pecten maximus). Gene 406:91–98

    CAS  Article  PubMed  Google Scholar 

  6. Bruvo B, Pons J, Ugarković Đ, Juan C, Petitpierre E, Plohl M (2003) Evolution of low-copy number and major satellite DNA sequences coexisting in two Pimelia species-groups (Coleoptera). Gene 312:85–94

    CAS  Article  PubMed  Google Scholar 

  7. Carleton MD, Musser GG (2005) Order Rodentia. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, pp 745–1601

    Google Scholar 

  8. Chaves R, Frönicke L, Guedes-Pinto H, Wienberg J (2004) Multidirectional chromosome painting between the Hirola antelope (Damaliscus hunteri, Alcelaphini, Bovidae), sheep and human. Chromosom Res 12:495–503

    CAS  Article  Google Scholar 

  9. Chaves R, Guedes-Pinto H, Heslop-Harrinson P (2005) Phylogenetic relationships and the primitive X chromosome inferred from chromosomal and satellite DNA analysis in Bovidae. Proc R Soc B 272:2009–2016

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. Cheng ZJ, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy–retroelement in wheat and its relatives. Genetics 164:665–672

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Cridland JM, Thornton KR, Long AD (2014) Gene expression variation in Drosophila melanogaster due to rare transposable element insertion alleles of large effect. Genetics 199(1):85–93

    PubMed Central  Article  PubMed  Google Scholar 

  12. Dover G (2002) Molecular drive. Trends Genet 18:587–589

    Article  PubMed  Google Scholar 

  13. Elder JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    CAS  Article  PubMed  Google Scholar 

  14. Enukashvily NI, Ponomartsev NV (2013) Mammalian satellite DNA: a speaking dumb. Adv Protein Chem Struct Biol 90:31–65

    CAS  Article  PubMed  Google Scholar 

  15. Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev 8:35–46

    CAS  Article  Google Scholar 

  16. Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166(4):493–504

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Hall LE, Mitchell SE, O’Neill RJ (2012) Pericentric and centromeric transcription: a perfect balance required. Chromosom Res 20:535–546

    CAS  Article  Google Scholar 

  18. Heikkinen E, Launonen V, Muller E, Bachmann L (1995) The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements. J Mol Evol 41:604–614

    CAS  Article  PubMed  Google Scholar 

  19. Kapitonov VV, Jurka J (1999) Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107:27–37

    CAS  Article  PubMed  Google Scholar 

  20. Kapitonov VV, Holmquist GP, Jurka J (1998) L1 repeat is a basic unit of heterochromatin satellites in cetaceans. Mol Biol Evol 15(5):611–612

    CAS  Article  PubMed  Google Scholar 

  21. López-Flores I, de la Herrán R, Garrido-Ramos MA, Boudry P, Ruiz-Rejón C, Ruiz-Rejón M (2004) The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 339:181–188

    Article  PubMed  Google Scholar 

  22. Louzada S, Paço A, Kubickova S et al (2008) Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Micron 39:1149–1155

    CAS  Article  PubMed  Google Scholar 

  23. Macas J, Koblížková A, Navrátilová A, Neumann P (2009) Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene 448:198–206

    CAS  Article  PubMed  Google Scholar 

  24. Marchal JA, Acosta MJ, Bullejos M, Puerma E, Díaz de la Guardia R, Sánchez A (2006) Distribution of L1-retroposons on giant sex chromosomes of Microtus cabrerae (Arvicolidae, Rodentia): functional and evolutionary implications. Chromosom Res 14:177–186

    CAS  Article  Google Scholar 

  25. Mayorov VI, Adkison LR, Vorobyeva NV et al (1996) Organization and chromosomal localization of a B1-like containing repeat of Microtus subarvalis. Mamm Genome 7:593–597

    CAS  Article  PubMed  Google Scholar 

  26. Ohno S (1972) So much “junk” DNA in our genome. In: Smith HH, ed. Evolution of genetic systems. New York: Gordon and Breach. Brookhaven Symp Biol, pp 366–370

  27. Paço A, Chaves R, Vieira-da-Silva A, Adega F (2013) The involvement of repetitive sequences in the remodelling of karyotypes: the Phodopus genomes (Rodentia, Cricetidae). Micron 46:27–34

    Article  PubMed  Google Scholar 

  28. Paço A, Adega F, Meštrović N, Plohl M, Chaves R (2014) Evolutionary story of a satellite DNA from Phodopus sungorus (Rodentia, Cricetidae). Genome Biol Evol 6(10):2944–2955

    PubMed Central  Article  PubMed  Google Scholar 

  29. Paço A, Adega F, Chaves R (2015) Line-1 retrotransposons: from “parasite” sequences to functional elements. J Appl Genet 56:133–145

    Article  PubMed  Google Scholar 

  30. Pezer Ž, Ugarković Đ (2008) Role of non-coding RNA and heterochromatin in aneuploidy and cancer. Semin Cancer Biol 18:123–130

    CAS  Article  PubMed  Google Scholar 

  31. Plohl M (2010) Those mysterious sequences of satellite DNAs. Period Biol 112(4):403–410

    Google Scholar 

  32. Plohl M, Meštrović N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123(4):313–325

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. Rebollo R, Romanish MT, Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46:21–42

    CAS  Article  PubMed  Google Scholar 

  34. Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72(4):686–727

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. Romanenko SA, Volobouev VT, Perelman PL et al (2007) Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroideia, Rodentia) inferred from chromosomal painting and banding comparison. Chromosom Res 15:283–297

    CAS  Google Scholar 

  36. Rossi MS, Pesce CG, Reig OA, Kornblihtt AR, Zorzópulos J (1993) Retroviral-like features in the repetitive unit of the major satellite DNA from the South American rodents of the genus Ctenomys. DNA Seq 3:379–381

    CAS  PubMed  Google Scholar 

  37. Santos S, Chaves R, Guedes-Pinto H (2004) Chromosomal localization of the major satellite DNA family (FA-SAT) in the domestic cat. Cytogenet Genome Res 107:119–122

    CAS  Article  PubMed  Google Scholar 

  38. Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization, 1st edn. Bios Scientific Publishers, Oxford, pp 1–199

    Google Scholar 

  39. Sharma A, Wolfgruber TK, Presting GG (2013) Tandem repeats derived from centromeric Retrotransposons. BMC Genomics 14(142):1–11

    Google Scholar 

  40. Slamovits CH, Rossi MS (2002) Satellite DNA: agent of chromosomal evolution in mammals. A review. J Neotropical Mamm 9(2):297–308

    Google Scholar 

  41. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    CAS  Article  PubMed  Google Scholar 

  42. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  43. Verma RS, Babu A (1995) Human chromosomes—principles and tecniques, 2nd edn. McGraw-Hills Book Company, New York, pp 1–419

    Google Scholar 

  44. Vittorazzi SE, Lourenço LB, Recco-Pimentel SM (2014) Long-time evolution and highly dynamic satellite DNA in leptodactylid and hylodid frogs. BMC Genet 15(111):1–11

    Google Scholar 

  45. Walsh JB (1987) Persistence of tandem arrays: implications for satellite DNA and simple-sequence DNAs. Genetics 115:553–567

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Wong LH, Choo KHA (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20(12):611–616

    CAS  Article  PubMed  Google Scholar 

  47. Wong LH, Brettingham-Moore KH, Chan L et al (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17(8):1146–1160

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  48. Zhu Q, Pao GM, Huynh AM et al (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477(7363):179–184

Download references


This work was funded by the project POCI/BIA-BCM/58541/2004, a PhD grant (SFRH/BD/41574/2007), and a research position on Animal Genomics of the “Sistema Científico e Tecnológico Nacional—Ciência 2007”, all from the Science and Technology Foundation (FCT) from Portugal. We are deeply grateful to Dr. Vitaly Volobouev for providing the C. cricetus and P. eremicus cell cultures.

Compliance with Ethical Standards

This research is in agreement with the current laws of the country in which they were performed. This article does not contain any studies with human or animal subjects performed by the any of the authors. All the authors are in agreement to the submission of this manuscript to Chromosome Research.

Conflict of interest

All authors declare that they have no competing interests.

Author information



Corresponding author

Correspondence to Raquel Chaves.

Additional information

Responsible Editors: Maria Assunta Biscotti, Pat Heslop-Harrison and Ettore Olmo

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paço, A., Adega, F., Meštrović, N. et al. The puzzling character of repetitive DNA in Phodopus genomes (Cricetidae, Rodentia). Chromosome Res 23, 427–440 (2015).

Download citation


  • Rodentia
  • Phodopus
  • Repetitive sequences
  • Chromosomal evolution