Skip to main content

Advertisement

Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Drosophila INterspersed Elements (DINEs) constitute an abundant but poorly understood group of Helitrons present in several Drosophila species. The general structure of DINEs includes two conserved blocks that may or not contain a region with tandem repeats in between. These central tandem repeats (CTRs) are similar within species but highly divergent between species. It has been assumed that CTRs have independent origins. Herein, we identify a subset of DINEs, termed DINE-TR1, which contain homologous CTRs of approximately 150 bp. We found DINE-TR1 in the sequenced genomes of several Drosophila species and in Bactrocera tryoni (Acalyptratae, Diptera). However, interspecific high sequence identity (∼88 %) is limited to the first ∼30 bp of each tandem repeat, implying that evolutionary constraints operate differently over the monomer length. DINE-TR1 is unevenly distributed across the Drosophila phylogeny. Nevertheless, sequence analysis suggests vertical transmission. We found that CTRs within DINE-TR1 have independently expanded into satellite DNA-like arrays at least twice within Drosophila. By analyzing the genome of Drosophila virilis and Drosophila americana, we show that DINE-TR1 is highly abundant in pericentromeric heterochromatin boundaries, some telomeric regions and in the Y chromosome. It is also present in the centromeric region of one autosome from D. virilis and dispersed throughout several euchromatic sites in both species. We further found that DINE-TR1 is abundant at piRNA clusters, and small DINE-TR1-derived RNA transcripts (25 nt) are predominantly expressed in the testes and the ovaries, suggesting active targeting by the piRNA machinery. These features suggest potential piRNA-mediated regulatory roles for DINEs at local and genome-wide scales in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AIC:

Akaike Information Criterion

CTRs:

Central tandem repeats

DINEs:

Drosophila INterspersed Elements

FISH:

Fluorescence in situ hybridization

IR:

Inverted repeat

miRNA:

microRNA

MSL:

Male-specific lethal complex

piRNA:

Piwi-interacting RNA

satDNA:

Satellite DNA

siRNA:

Small interfering RNA

SPR:

Subtree pruning and regrafting algorithm

subTIRs:

Subterminal inverted repeats

TE:

Transposable element

TR:

Tandem repeat

References

  • Abdurashitov MA, Gonchar DA, Chernukhin VA, Tomilov VN, Tomilova JE, Schostak NG, Zatsepina OG, Zelentsova ES, Evgen'ev MB, Degtyarev SK (2013) Medium-sized tandem repeats represent an abundant component of the Drosophila virilis genome. BMC Genomics 14(1):771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M (1989) Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press

  • Baimai V (1977) Chromosomal polymorphisms of constitutive heterochromatin and inversions in Drosophila. Genetics 85(1):85–93

    PubMed Central  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergman CM, Kreitman M (2001) Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. Genome Res 1(8):1335–1345

    Article  Google Scholar 

  • Bergman CM, Quesneville H, Anxolabéhère D, Ashburner M (2006) Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol 7(11):R112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Biessmann H, Zurovcova M, Yao JG, Lozovskaya E, Walter MF (2000) A telomeric satellite in Drosophila virilis and its sibling species. Chromosoma 109(6):372–380

    Article  CAS  PubMed  Google Scholar 

  • Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosome Research. doi:10.1007/s10577-015-9494-4

  • Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177(3):1277–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brajkovic J, Feliciello I, Bruvo-MadWaric B, Ugarkovic D (2012) Satellite DNA-Like elements associated with genes within euchromatin of the beetle Tribolium castaneum. G3 (Bethesda) 2:931–941

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322(5906):1387–1392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SCR, Lin H (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 21(18):2300–2311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown EJ, Bachtrog D (2014) The chromatin landscape of Drosophila: comparisons between species, sexes, and chromosomes. Genome Res 24:1125–1137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown JD, O'Neill RJ (2010) Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 11:291–316

    Article  CAS  PubMed  Google Scholar 

  • Caletka BC, McAllister BF (2004) A genealogical view of chromosomal evolution and species delimitation in the Drosophila virilis species subgroup. Mol Phylogenet Evol 33:664–670

  • Carareto CM, Hernandez EH, Vieira C (2014) Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species. Gene 537(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Casacuberta E, Pardue ML (2003) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci U S A 100(6):3363–3368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Wit E, Greil F, van Steensel B (2005) Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res 15:1265–1273

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Tally JF, Notredame C (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res gkr 245:W13–W17

    Article  CAS  Google Scholar 

  • Dias GB, Svartman M, Delprat A, Ruiz A, Kuhn GCS (2014) Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis. Genome Biol Evol 6(6):1302–1313

    Article  PubMed Central  PubMed  Google Scholar 

  • Dimitri P, Pisano C (1989) Position effect variegation in Drosophila melanogaster: relationship between suppression effect and the amount of Y chromosome. Genetics 122(4):793–800

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  CAS  Google Scholar 

  • Du C, Caronna J, He L, Dooner HK (2008) Computational prediction and molecular confirmation of Helitron transposons in the maize genome. BMC Genomics 9(1):51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ellison CE, Bachtrog D (2013) Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 342(6160):846–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feliciello I, Akrap I, Brajković J, Zlatar I, Ugarković Đ (2015) Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum. Genome Biol Evol 7(1):228–239

    Article  PubMed Central  Google Scholar 

  • Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7(10):e1000234. doi:10.1371/journal.pbio.1000234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Field D, Tiwari B, Booth T, Houten S, Swan D, Bertrand N, Thurston M (2006) Open software for biologists: from famine to feast. Nat Biotechnol 24(7):801–804

    Article  CAS  PubMed  Google Scholar 

  • Fonseca NA, Morales-Hojas R, Reis M, Rocha H, Vieira CP, Nolte V, Schlötterer C, Vieira J (2013) Drosophila americana as a model species for comparative studies on the molecular basis of phenotypic variation. Genome Biol Evol 5(4):661–679

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Francisco FO, Lemos B (2014) How do Y-chromosomes modulate genome-wide epigenetic states: genome folding, chromatin sinks, and gene expression. J Genomics 2:94–103

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaffney PM, Pierce JC, Mackinley AG, Titchen DA, Glenn WK (2003) Pearl, a novel family of putative transposable elements in bivalve mollusks. J Mol Evol 56:308–316

    Article  CAS  PubMed  Google Scholar 

  • Gall JG, Cohen EH, Polan ML (1971) Repetitive DNA sequences in Drosophila. Chromosoma 33(3):319–344

    Article  CAS  PubMed  Google Scholar 

  • Gatti M, Pimpinelli S, Santini G (1976) Characterization of Drosophila heterochromatin. Chromosoma (Berl) 57:351–375

    Article  CAS  Google Scholar 

  • Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19(5):748–761

    Article  CAS  PubMed  Google Scholar 

  • Gazzani S, Gendall AR, Lister C, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nature Rev Genet 10(2):94–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilchrist AS, Shearman DC, Frommer M, Raphael KA, Deshpande NP, Wilkins MR, Sherwin WB, Sved JA (2014) The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species. BMC Genomics 15(1):1153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Article  PubMed Central  PubMed  Google Scholar 

  • Gordon A, Hannon GJ (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools (unpublished) http://hannonlab.cshl.edu/fastx_toolkit

  • Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity 101:228–238

    Article  CAS  PubMed  Google Scholar 

  • Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–1197

    Article  CAS  PubMed  Google Scholar 

  • Guillén Y, Rius N, Delprat A, Williford A, Muyas F, Puig M, Casillas S, Ràmia M, Egea R, Negre B, Mir G, Camps J, Moncunill V, Ruiz-Ruano FJ, Cabrero J, de Lima LG, Dias GB, Ruiz JC, Kapusta A, Garcia-Mas J, Gut M, Gut IG, Torrents D, Camacho JP, Kuhn GC, Feschotte C, Clark AG, Betrán E, Barbadilla A, Ruiz A (2014) Genomics of ecological adaptation in cactophilic Drosophila. Genome Biol Evol 7(1):349–366

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Harris RS (2007) Improved pairwise alignment of genomic DNA. Ph.D. Thesis, The Pennsylvania State University

  • Harris AN, Macdonald PM (2001) Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128(14):2823–2832

    CAS  PubMed  Google Scholar 

  • Heikkinen E, Launonen V, Müller E, Bachmann L (1995) The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements. J Mol Evol 41:604–614

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organization of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, Kaminker JS, Kennedy C, Mungall CJ, Sullivan BA, Sutton GG, Yasuhara JC, Wakimoto BT, Myers EW, Celniker SE, Rubin GM, Karpen GH (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 3(12):research0085

  • Huang XA, Yin H, Sweeney S, Raha D, Snyder M, Lin H (2013) A major epigenetic programming mechanism guided by piRNAs. Dev Cell 24(5):502–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International Glossina Genome Initiative (2014) Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science 344(6182):380–386

    Article  PubMed Central  CAS  Google Scholar 

  • Jordan IK, Miller WJ (2008) Genome defense against transposable elements and the origins of regulatory RNA. In: Lankenau DH, Volff JN, eds. Transposons and the dynamic genome. Springer-Verlag Berlin Heidelbarg, pp 77–94

  • Junier T, Pagni M (2000) Dotlet: diagonal plots in a web browser. Bioinformatics 16(2):178–179

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1–4):462–467

    Article  CAS  PubMed  Google Scholar 

  • Kalmykova AI, Klenov MS, Gvozdev VA (2005) Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res 33(6):2052–2059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 98:8714–8719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2007a) Helitrons in fruit flies. Repbase Reports 7(3):130

    Google Scholar 

  • Kapitonov VV, Jurka J (2007b) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23:521–529

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Holmquist GP, Jurka J (1998) L1 repeat is a basic unit of heterochromatin satellites in cetaceans. Mol Biol Evol 15(5):611–612

    Article  CAS  PubMed  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  CAS  PubMed  Google Scholar 

  • Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7(1):474

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kuhn GCS, Heslop-Harrison JS (2011) Characterization and genomic organization of PERI, a repetitive DNA in the Drosophila buzzatii cluster related to DINE-1 transposable elements and highly abundant in the sex chromosomes. Cytogenet Genome Res 132:79–88

  • Kuhn GCS, Sene FM, Moreira-Filho O, Schwarzacher T, Heslop-Harrison JS (2008) Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Chromosome Res 16(2):307–324

    Article  CAS  PubMed  Google Scholar 

  • Le Thomas A, Marinov GK, Aravin AA (2014) A transgenerational process defines piRNA biogenesis in Drosophila virilis. Cell Reports 8:1617–1623

    Article  PubMed  CAS  Google Scholar 

  • Lee YCG (2015) The role of piRNA-mediated epigenetic silencing in the population dynamics of transposable elements in Drosophila melanogaster. PLoS Genet 11(6):e1005269

    Article  PubMed Central  PubMed  Google Scholar 

  • Lemos B, Araripe LO, Hartl DL (2008) Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319:91–93

    Article  CAS  PubMed  Google Scholar 

  • Leung W, Shaffer CD, Reed LK, et al. (2015) Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution. G3 (Bethesda) 5(5):719–740

  • Liu J, He Y, Amasino R, Chen X (2004) siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev 18(23):2873–2878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Locke J, Howard LT, Aippersbach N, Podemski L, Hodgetts RB (1999) The characterization of DINE-1, a short, interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster. Chromosoma 108:356–366

    Article  CAS  PubMed  Google Scholar 

  • Loreto ELS, Carareto CMA, Capy P (2008) Revisiting horizontal transfer of transposable elements in Drosophila. Heredity 100(6):545–554

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Koblížková A, Navrátilová A, Neumann P (2009) Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene 448:198–206

    Article  CAS  PubMed  Google Scholar 

  • Mahan JT, Beck ML (1986) Heterochromatin in mitotic chromosomes of the Virilis species group of Drosophila. Genetica 68:113–118

    Article  Google Scholar 

  • Malik HS, Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 138(6):1067–1082

    Article  CAS  PubMed  Google Scholar 

  • Markow T (2015) The secret lives of Drosophila flies. eLife 4:e06793

    Article  Google Scholar 

  • Megosh HB, Cox DN, Campbell C, Lin H (2006) The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 16:1884–1894

    Article  CAS  PubMed  Google Scholar 

  • Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SW (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10

    Article  PubMed Central  PubMed  Google Scholar 

  • Menon DU, Coarfa C, Xiao W, Gunaratne PH, Meller VH (2014) siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster. Proc Natl Acad Sci U S A 111(46):16460–16465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michaels SD, He Y, Scortecci KC, Amasino RM (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A 100(17):10102–10107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miklos GLG, Cotsell JN (1990) Chromosome structure at interfaces between major chromatin types: alpha‐and beta‐heterochromatin. Bioessays 12(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Miller WJ, Nagel A, Bachmann J, Bachmann L (2000) Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Mol Biol Evol 17(11):1597–1609

    Article  CAS  PubMed  Google Scholar 

  • Morales-Hojas R, Reis M, Vieira CP, Vieira J (2011) Resolving the phylogenetic relationships and evolutionary history of the Drosophila virilis group using multilocus data. Mol Phylogenet Evol 60(2):249–258

    Article  PubMed  Google Scholar 

  • Olszak AM, van Essen D, Pereira AJ, Diehl S, Manke T, Maiato H, Saccani S, Heun P (2011) Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nature Cell Biol 13(7):799–808

    Article  CAS  PubMed  Google Scholar 

  • Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5(4):745–757

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petrov DA, Hartl DL (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15(3):293–302

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA, Fiston-Lavier AS, Lipatov M, Lenkov K, González J (2011) Population genomics of transposable elements in Drosophila melanogaster. Mol Biol Evol 28(5):1633–1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plohl M, Meštrović N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pritchard DK, Schubiger G (1996) Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Genes Dev 10(9):1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Rošić S, Köhler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207(3):335–349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rozhkov NV, Aravin AA, Zelentsova ES, Schostak NG, Sachidanandam R, McCombie WR, Hannon GJ, Evgen'ev MB (2010) Small RNA-based silencing strategies for transposons in the process of invading Drosophila species. RNA 16(8):1634–1645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Satovic E, Plohl M (2013) Tandem repeat-containing MITEs in the clam Donax trunculus. Genome Biol Evol 5(12):2549–2559

    Article  PubMed Central  PubMed  Google Scholar 

  • Saze H, Kitayama J, Takashima K, Miura S, Harukawa Y, Ito T, Kakutani T (2013) Mechanism for full-length RNA processing of Arabidopsis genes containing intragenic heterochromatin. Nat Commun 4:2301

    Article  PubMed  CAS  Google Scholar 

  • Scalvenzi T, Pollet N (2014) Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA. Mol Phylogenet Evol 81:1–9

    Article  PubMed  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. BIOS Scientific Publishers Limited, Oxford

    Google Scholar 

  • Scott JG, Warren WC, Beukeboom LW, Bopp D, Clark AG, Giers SD, Hediger M, Jones AK, Kasai S, Leichter CA, Li M, Meisel RP, Minx P, Murphy TD, Nelson DR, Reid WR, Rinkevich FD, Robertson HM, Sackton TB, Sattelle DB, Thibaud-Nissen F, Tomlinson C, van de Zande L, Walden KKO, Wilson RK, Liu N (2014) Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol 15(10):466

    Article  PubMed Central  PubMed  Google Scholar 

  • Sentmanat MF, Elgin SC (2012) Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements. Proc Natl Acad Sci U S A 109(35):14104–14109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sentmanat M, Wang SH, Elgin SCR (2013) Targeting heterochromatin formation to transposable elements in Drosophila: potential roles of the piRNA system. Biochem Mosc 78(6):562–571

    Article  CAS  Google Scholar 

  • Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8(4):272–285

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Subramanian S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Thomas J, Vadnagara K, Pritham E (2014) DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons). Mob DNA 5:18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ugarkovic D (2009) Centromere-competent DNA: structure and evolution. In: Ugarkovic D, ed. Centromere: structure and evolution. Springer-Verlag Berlin Heidelberg. pp. 53–76

  • Vaury C, Bucheton A, Pelisson A (1989) The b heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98:215–224

    Article  CAS  PubMed  Google Scholar 

  • Vermaak D, Malik HS (2009) Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 43:467–492

    Article  CAS  PubMed  Google Scholar 

  • Villasante A, Abad JP, Planelló R, Méndez-Lago M, Celniker SE, de Pablos B (2007) Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res 17(12):1909–1918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villasante A, de Pablos B, Méndez-Lago M, Abad JP (2008). Telomere maintenance in Drosophila: rapid transposon evolution at chromosome ends. Cell Cycle 15;7(14):2134–2138

  • Vlassova IE, Graphodatsky AS, Belyaeva ES, Zhimulev IF (1991) Constitutive heterochromatin in early embryogenesis of Drosophila melanogaster. Mol Gen Genet 229(2):316–318

    Article  CAS  PubMed  Google Scholar 

  • Volpe T, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen R (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297(5588):1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Wallrath LL, Vitalini MW, Elgin SCR (2014) Heterochromatin: a critical part of the genome. In: Abmayr SM (ed) Workman JL. Fundamentals of Chromatin, Springer New York, pp 529–552

    Google Scholar 

  • Wasserlauf I, Usov K, Artemov G, Anan’ina T, Stegniy V (2015) Specific features in linear and spatial organizations of pericentromeric heterochromatin regions in polytene chromosomes of the closely related species Drosophila virilis and D. kanekoi (Diptera: Drosophilidae). Genetica 1–12.

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamanaka S, Siomi MC, Siomi H (2014) piRNA clusters and open chromatin structure. Mobile. DNA 5(1):22

    Google Scholar 

  • Yang HP, Barbash DA (2008) Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biol 9:R39

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang HP, Hung TL, You TL, Yang TH (2006) Genome wide comparative analysis of the highly abundant transposable element DINE-1 suggests a recent transpositional burst in Drosophila yakuba. Genetics 173:189–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin H, Lin H (2007) An epigenetic activation role of Piwi and a Piwi associated piRNA in Drosophila melanogaster. Nature 450:304–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the anonymous reviewers’ comments on the manuscript. This work was supported by grants from “Fundação de Amparo à Pesquisa do Estado de Minas Gerais” (FAPEMIG) (Proc: APQ-01563-14), “Programa Institucional de Auxílio à Pesquisa de Doutores Recém-Contratados da Universidade Federal de Minas Gerais,” “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq), and a doctoral fellowship from “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) to GD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo C. S. Kuhn.

Additional information

Responsible editor: Maria Assunta Biscotti, Pat Heslop-Harrison and Ettore Olmo

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, G.B., Heringer, P., Svartman, M. et al. Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression. Chromosome Res 23, 597–613 (2015). https://doi.org/10.1007/s10577-015-9480-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9480-x

Keywords