Advertisement

Chromosome Research

, Volume 22, Issue 2, pp 217–223 | Cite as

Control of transposable elements in Arabidopsis thaliana

  • Hidetaka Ito
  • Tetsuji Kakutani
Review

Abstract

Arabidopsis thaliana serves as a very good model organism to investigate the control of transposable elements (TEs) by genetic and genomic approaches. As TE movements are potentially deleterious to the hosts, hosts silence TEs by epigenetic mechanisms, such as DNA methylation. DNA methylation is controlled by DNA methyltransferases and other regulators, including histone modifiers and chromatin remodelers. RNAi machinery directs DNA methylation to euchromatic TEs, which is under developmental control. In addition to the epigenetic controls, some TEs are controlled by environmental factors. TEs often affect expression of nearby genes, providing evolutionary sources for epigenetic, developmental, and environmental gene controls, which could even be beneficial for the host.

Keywords

Epigenetics Genomics DNA methylation Heterochromatin 

Abbreviations

TE

Transposable element

RNAi

RNA interference

MET

Methyltransferase

DDM

Decrease in DNA methylation

CMT

Chromomethylase

DRM

Domain-rearranged methyltransferase

DRD

Defective in RNA-directed DNA methylation

RDR

RNA-dependent RNA polymerase

RdDM

RNA-directed DNA methylation

DCL

Dicer like

FWA

Flowering Wageningen

SDC

Suppressor of DRM1 DRM2 CMT3

siRNA

Small-interfering RNA

SINE

Short interspersed nuclear element

tasiRNA

Trans-acting small-interfering RNA

TIR

Terminal inverted repeat

LTR

Long terminal repeat

References

  1. Arteaga-Vázquez M, Caballero-Pérez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18:3355–3369PubMedCentralPubMedCrossRefGoogle Scholar
  2. Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249PubMedCrossRefGoogle Scholar
  3. Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144PubMedCrossRefGoogle Scholar
  5. Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360PubMedCrossRefGoogle Scholar
  6. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219PubMedCentralPubMedCrossRefGoogle Scholar
  7. Cui H, Fedoroff NV (2002) Inducible DNA demethylation mediated by the maize suppressor-mutator transposon-encoded TnpA protein. Plant Cell 14:2883–2899PubMedCentralPubMedCrossRefGoogle Scholar
  8. de la Chaux N, Tsuchimatsu T, Shimizu KK, Wagner A (2012) The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mob DNA 3:2PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fedoroff N (1996) Epigenetic regulation of the maize Spm transposable element. In: Riggs, A., Martienssen, R. & Russo, V. (eds.) Epigenetic mechanisms of gene regulation (pp 575–592). Cold Spring Harbor Laboratory PressGoogle Scholar
  10. Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fu Y, Kawabe A, Etcheverry M, Ito T, Toyoda A, Fujiyama A, Colot V, Tarutani Y, Kakutani T (2013) Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor. EMBO J 32:2407–2417PubMedCrossRefGoogle Scholar
  12. Fujimoto R, Kinoshita Y, Kawabe A, Kinoshita T, Takashima K, Nordborg M, Nasrallah ME, Shimizu KK, Kudoh H, Kakutani T (2008) Evolution and control of imprinted FWA genes in the genus Arabidopsis. PLoS Genet 4:e1000048PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fukai E, Umehara Y, Sato S, Endo M, Kouchi H, Hayashi M, Stougaard J, Hirochika H (2010) Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants. PLoS Genet 6:e1000868PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gao Z, Liu HL, Daxinger L, Pontes O, He X, Qian W, Lin H, Xie M, Lorkovic ZJ, Zhang S, Miki D, Zhan X, Pontier D, Lagrange T, Jin H, Matzke AJ, Matzke M, Pikaard CS, Zhu JK (2010) An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465:106–109PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451PubMedCentralPubMedCrossRefGoogle Scholar
  16. Grewal SI, Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006) The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18:104–118PubMedCentralPubMedCrossRefGoogle Scholar
  18. Henderson IR, Jacobsen SE (2008) Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 22:1597–1606PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hickey DA (1982) Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101:519–531PubMedCentralPubMedGoogle Scholar
  20. Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528PubMedCentralPubMedGoogle Scholar
  21. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA 108:1755–1762PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481PubMedCentralPubMedCrossRefGoogle Scholar
  25. Huettel B, Kanno T, Daxinger L, Aufsatz W, Matzke AJ, Matzke M (2006) Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J 25:2828–2836PubMedCentralPubMedCrossRefGoogle Scholar
  26. Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T et al (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364PubMedCentralPubMedCrossRefGoogle Scholar
  27. Inagaki S, Kakutani T (2012) What triggers differential DNA methylation of genes and TEs: contribution of body methylation? Cold Spring Harb Symp Quant Biol 77:155–160PubMedCrossRefGoogle Scholar
  28. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119PubMedCrossRefGoogle Scholar
  29. Ito H, Yoshida T, Tsukahara S, Kawabe A (2013) Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene 518:256–261PubMedCrossRefGoogle Scholar
  30. Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. Science 277:1100–1103PubMedCrossRefGoogle Scholar
  31. Jacobsen SE, Sakai H, Finnegan EJ, Cao X, Meyerowitz EM (2000) Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol 10:179–186PubMedCrossRefGoogle Scholar
  32. Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22:94–97PubMedCrossRefGoogle Scholar
  33. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167PubMedCrossRefGoogle Scholar
  34. Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T (2003) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13:421–426PubMedCrossRefGoogle Scholar
  35. Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170PubMedCrossRefGoogle Scholar
  36. Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523PubMedCrossRefGoogle Scholar
  37. Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A, Lund G (2004) Extensive maternal DNA hypomethylation in endosperm of Zea mays. Plant Cell 16:510–522PubMedCentralPubMedCrossRefGoogle Scholar
  39. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220PubMedCentralPubMedCrossRefGoogle Scholar
  40. Law JA, Du J, Hale CJ, Feng S, Krajewski K, Palanca AM, Strahl BD, Patel DJ, Jacobsen SE (2013) Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:385–389PubMedCrossRefGoogle Scholar
  41. Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:7376–7381PubMedCentralPubMedCrossRefGoogle Scholar
  42. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476PubMedCrossRefGoogle Scholar
  43. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedCentralPubMedCrossRefGoogle Scholar
  44. Martienssen R (1996) Epigenetic silencing of Mu transposable elements in maize. In: Riggs, A., Martienssen, R. & Russo, V. (eds.)Epigenetic mechanisms of gene regulation (pp 593–608). Cold Spring Harbor Laboratory PressGoogle Scholar
  45. Matsunaga W, Kobayashi A, Kato A, Ito H (2012) The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana. Plant Cell Physiol 53:824–833PubMedCrossRefGoogle Scholar
  46. Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376PubMedCrossRefGoogle Scholar
  47. McClintock B (1965) The control of gene action in maize. Brookhaven Symp Biol 18:162–184Google Scholar
  48. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801PubMedCrossRefGoogle Scholar
  49. McCue AD, Nuthikattu S, Reeder SH, Slotkin RK (2012) Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet 8:e1002478CrossRefGoogle Scholar
  50. McCue AD, Nuthikattu S, Slotkin RK (2013) Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biol 10:1379–1395PubMedCentralPubMedCrossRefGoogle Scholar
  51. Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201PubMedCentralPubMedCrossRefGoogle Scholar
  52. Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien MA (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 33:257–266PubMedCrossRefGoogle Scholar
  53. Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430PubMedCrossRefGoogle Scholar
  54. Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214PubMedCrossRefGoogle Scholar
  55. Nosaka M, Itoh J, Nagato Y, Ono A, Ishiwata A, Sato Y (2012) Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. PLoS Genet 8:e1002953PubMedCentralPubMedCrossRefGoogle Scholar
  56. Peterson-Burch BD, Nettleton D, Voytas DF (2004) Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol 5:R78PubMedCentralPubMedCrossRefGoogle Scholar
  57. Pouteau S, Huttner E, Grandbastien MA, Caboche M (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J 10:1911–1918PubMedCentralPubMedGoogle Scholar
  58. Saze H, Kakutani T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26:3641PubMedCentralPubMedCrossRefGoogle Scholar
  59. Schläppi M, Raina R, Fedoroff N (1994) Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell 77:427–437PubMedCrossRefGoogle Scholar
  60. Schläppi M, Raina R, Fedoroff N (1996) A highly sensitive plant hybrid protein assay system based on the Spm promoter and TnpA protein for detection and analysis of transcription activation domains. Plant Mol Biol 32:717–725PubMedCrossRefGoogle Scholar
  61. Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373PubMedCentralPubMedCrossRefGoogle Scholar
  62. Schoft VK, Chumak N, Mosiolek M, Slusarz L, Komnenovic V, Brownfield L, Twell D, Kakutani T, Tamaru H (2009) Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep 10:1015–1021PubMedCentralPubMedCrossRefGoogle Scholar
  63. Schoft VK, Chumak N, Choi Y, Hannon M, Garcia-Aguilar M, Machlicova A, Slusarz L, Mosiolek M, Park JS, Park GT, Fischer RL, Tamaru H (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci USA 108:8042–8047PubMedCentralPubMedCrossRefGoogle Scholar
  64. Singer T, Yordan C, Martienssen RA (2001) Robertson's mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1). Genes Dev 15:591–602PubMedCentralPubMedCrossRefGoogle Scholar
  65. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472PubMedCentralPubMedCrossRefGoogle Scholar
  66. Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802PubMedCrossRefGoogle Scholar
  67. Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 36:365–376PubMedCrossRefGoogle Scholar
  68. Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393PubMedCrossRefGoogle Scholar
  69. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  70. Tran RK, Zilberman D, de Bustos C, Ditt RF, Henikoff JG, Lindroth AM, Delrow J, Boyle T, Kwong S, Bryson TD, Jacobsen SE, Henikoff S (2005) Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol 6:R90PubMedCentralPubMedCrossRefGoogle Scholar
  71. Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461:423–426PubMedCrossRefGoogle Scholar
  72. Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-i T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T (2012) Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 26:705–713PubMedCentralPubMedCrossRefGoogle Scholar
  73. Wasseneger M, Heimes S, Riedel L, Stanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576CrossRefGoogle Scholar
  74. Wierzbicki AT, Cocklin R, Mayampurath A, Lister R, Rowley MJ, Gregory BD, Ecker JR, Tang H, Pikaard CS (2012) Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev 26:1825–1836PubMedCentralPubMedCrossRefGoogle Scholar
  75. Yu Z, Wright SI, Bureau TE (2000) Mutator-like elements in Arabidopsis thaliana. Structure, diversity and evolution. Genetics 156:2019–2031PubMedCentralPubMedGoogle Scholar
  76. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of ScienceHokkaido UniversitySapporoJapan
  2. 2.Department of Integrated GeneticsNational Institute of GeneticsMishimaJapan

Personalised recommendations