Skip to main content
Log in

Maintenance of epigenetic information: a noncoding RNA perspective

  • REVIEW
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Along the lines of established players like chromatin modifiers and transcription factors, noncoding RNA (ncRNA) are now widely accepted as one of the key regulatory molecules in epigenetic regulation of transcription. With increasing evidence of ncRNAs in the establishment of gene silencing through their ability to interact with major chromatin modifiers, in the current review, we discuss their prospective role in the area of inheritance and maintenance of these established silenced states which can be reversible or irreversible in nature. In addition, we attempt to understand and speculate how these RNA dependent or independent maintenance mechanisms differ between each other in a developmental stage, tissue, and gene-specific manner in different biological contexts by utilizing known/unknown regulatory factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DMR:

Differentially methylated region

Dnmt1:

DNA (cytosine-5)-methyltransferase 1

Dnmt3a:

DNA (cytosine-5)-methyltransferase 3 alpha

Dnmt3b:

DNA (cytosine-5)-methyltransferase 3 beta

Eed:

Embryonic ectoderm development

ES cells:

Embryonic stem cells

EZH2:

Enhancer of zeste homolog 2

H3K4me1:

Histone H3 monomethylated at lysine 4

H3K4me3:

Histone H3 trimethylated at lysine 4

H3K27Ac:

Histone H3 acetylated at lysine 27

H3K27me3:

Histone H3 trimethylated at lysine 27

Kb:

Kilobase

lncRNA:

Long noncoding RNA

MEFs:

Mouse embryonic fibroblasts

ncRNA:

Noncoding RNA

PcG:

Polycomb group of proteins

PIGs:

Placentally imprinted genes

piRNA:

Piwi-interacting RNA

pit-RNA:

piRNA-targeted long noncoding RNA

PRC1:

Polycomb Repressive Complex 1

PRC2:

Polycomb Repressive Complex 2

Suz12:

Suppressor Of Zeste 12 Homolog

TrxG:

Trithorax Group proteins

UIGs:

Ubiquitously imprinted genes

Xa:

Active X chromosome

XCI:

X chromosome inactivation

Xi:

Inactive X chromosome

Xist:

X-inactive specific transcript

References

  • Arnaud P (2010) Genomic imprinting in germ cells: imprints are under control. Reproduction 140:411–423

    Article  PubMed  CAS  Google Scholar 

  • Bostick M, Kim JK, Esteve PO et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  PubMed  CAS  Google Scholar 

  • Buske FA, Bauer DC, Mattick JS, Bailey TL (2012) Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 22:1372–1381

    Article  PubMed  CAS  Google Scholar 

  • Cedar H (1988) DNA methylation and gene activity. Cell 53:3–5

    Article  PubMed  CAS  Google Scholar 

  • Chotalia M, Smallwood SA, Ruf N et al (2009) Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 23:105–117

    Article  PubMed  CAS  Google Scholar 

  • Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R (1999) Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22:323–324

    Article  PubMed  CAS  Google Scholar 

  • Gardner KE, Allis CD, Strahl BD (2011) Operating on chromatin, a colorful language where context matters. J Mol Biol 409:36–46

    Article  PubMed  CAS  Google Scholar 

  • Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45:814–825

    Article  PubMed  CAS  Google Scholar 

  • Grote P, Wittler L, Hendrix D et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214

    Article  PubMed  CAS  Google Scholar 

  • Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Guseva N, Mondal T, Kanduri C (2012) Antisense noncoding RNA promoter regulates the timing of de novo methylation of an imprinting control region. Dev Biol 361:403–411

    Article  PubMed  CAS  Google Scholar 

  • Hansen KH, Helin K (2009) Epigenetic inheritance through self-recruitment of the polycomb repressive complex 2. Epigenetics 4:133–138

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis C (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Kanduri C (2011) Kcnq1ot1: a chromatin regulatory RNA. Semin Cell Dev Biol 22:343–350

    Article  PubMed  CAS  Google Scholar 

  • Kanduri C, Whitehead J, Mohammad F (2009) The long and the short of it: RNA-directed chromatin asymmetry in mammalian X-chromosome inactivation. FEBS Lett 583:857–864

    Article  PubMed  CAS  Google Scholar 

  • Klattenhoff CA, Scheuermann JC, Surface LE et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583

    Article  PubMed  CAS  Google Scholar 

  • Koerner MV, Pauler FM, Huang R, Barlow DP (2009) The function of non-coding RNAs in genomic imprinting. Development 136:1771–1783

    Article  PubMed  CAS  Google Scholar 

  • Korostowski L, Raval A, Breuer G, Engel N (2011) Enhancer-driven chromatin interactions during development promote escape from silencing by a long non-coding RNA. Epigenetics Chromatin 4:21

    Article  PubMed  CAS  Google Scholar 

  • Latos PA, Barlow DP (2009) Regulation of imprinted expression by macro non-coding RNAs. RNA Biol 6(2):100–106

    Article  PubMed  CAS  Google Scholar 

  • Lee JT (2009) Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 23:1831–1842

    Article  PubMed  CAS  Google Scholar 

  • Lessing D, Lee JT (2013) X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu Rev Genomics Hum Genet 14:85–110

    Article  PubMed  CAS  Google Scholar 

  • Lewis A, Mitsuya K, Umlauf D et al (2004) Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 36:1291–1295

    Article  PubMed  CAS  Google Scholar 

  • Ligtenberg MJ, Kuiper RP, Chan TL et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41:112–117

    Article  PubMed  CAS  Google Scholar 

  • Lo SM, Follmer NE, Lengsfeld BM et al (2012) A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro. Mol Cell 46:784–796

    Article  PubMed  CAS  Google Scholar 

  • Mager J, Montgomery ND, de Villena FP, Magnuson T (2003) Genome imprinting regulated by the mouse polycomb group protein Eed. Nat Genet 33:502–507

    Article  PubMed  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  PubMed  CAS  Google Scholar 

  • Mohammad F, Mondal T, Kanduri C (2009) Epigenetics of imprinted long noncoding RNAs. Epigenetics 4:277–286

    Article  PubMed  CAS  Google Scholar 

  • Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C (2010) Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137:2493–2499

    Article  PubMed  CAS  Google Scholar 

  • Mohammad F, Pandey GK, Mondal T et al (2012) Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139:2792–2803

    Article  PubMed  CAS  Google Scholar 

  • Morris KV, Santoso S, Turner AM, Pastori C, Hawkins PG (2008) Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 4:e1000258

    Article  PubMed  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    Google Scholar 

  • Petruk S, Sedkov Y, Johnston DM et al (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150(5):922–933

    Article  PubMed  CAS  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  PubMed  CAS  Google Scholar 

  • Ringrose L, Paro R (2007) Polycomb/trithorax response elements and epigenetic memory of cell identity. Development 134:223–232

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Robertson K (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20:3139–3155

    Article  PubMed  CAS  Google Scholar 

  • Royo H, Cavaille J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166

    Article  PubMed  CAS  Google Scholar 

  • Santoro F, Mayer D, Klement RM et al (2013) Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 140:1184–1195

    Article  PubMed  CAS  Google Scholar 

  • Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269

    Article  PubMed  CAS  Google Scholar 

  • Terranova R, Yokobayashi S, Stadler MB et al (2008) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15:668–679

    Article  PubMed  CAS  Google Scholar 

  • Thomson JP, Skene PJ, Selfridge J et al (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464:1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  PubMed  CAS  Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D et al (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34:157–165

    Article  PubMed  CAS  Google Scholar 

  • Umlauf D, Goto Y, Cao R et al (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of polycomb group complexes. Nat Genet 36:1296–1300

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Tomizawa S, Mitsuya K et al (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332:848–852

    Article  PubMed  CAS  Google Scholar 

  • Weaver JR, Sarkisian G, Krapp C et al (2010) Domain-specific response of imprinted genes to reduced DNMT1. Mol Cell Biol 30:3916–3928

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5:695–705

    Article  PubMed  CAS  Google Scholar 

  • Yap KL, Li S, Munoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674

    Article  PubMed  CAS  Google Scholar 

  • Yildirim E, Kirby JE, Brown DE et al (2013) Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152:727–742

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Gius D, Onyango P et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    Article  PubMed  CAS  Google Scholar 

  • Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129:693–706

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the Swedish Cancer Research foundation (Cancerfonden: Kontrakt no.100422), Swedish Research Council (VR-M:K2011-66X-20781-04-3; VR-NT: 621-2011-4996), and Barncancerfonden (PROJ11/067) to CK. CK is a Senior Research Fellow supported by VR-M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Kanduri.

Additional information

Responsible Editors: Brian P. Chadwick, Kristin C. Scott, and Beth A. Sullivan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, T., Kanduri, C. Maintenance of epigenetic information: a noncoding RNA perspective. Chromosome Res 21, 615–625 (2013). https://doi.org/10.1007/s10577-013-9385-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9385-5

Keywords

Navigation