Skip to main content
Log in

Boosting transcription by transcription: enhancer-associated transcripts

  • REVIEW
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

Arc:

Activity-regulated cytoskeleton-associated protein

CBP:

CREB-binding protein

ChIP:

Chromatin immunoprecipitation

ChIP-seq:

ChIP coupled with massively paralleled sequencing

E2:

17β-Estradiol

ER-α:

Estrogen receptor-α

eRNA:

Enhancer RNA

GRO-seq:

Global run-on sequencing

H3K9ac:

Histone H3 acetylated at lysine 9

H3K27ac:

Histone H3 acetylated at lysine 27

H3K4me1:

Histone H3 monomethylated at lysine 4

H3K4me2:

Histone H3 dimethylated at lysine 4

H3K4me3:

Histone H3 trimethylated at lysine 4

H3K36me3:

Histone H3 trimethylated at lysine 36

H3S10ph:

H3 serine-10 phosphorylation

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

kb:

Kilobase

KCl:

Potassium chloride

KLA:

Kdo2-lipid A

LNA:

Locked nucleic acids

lncRNA:

Long noncoding RNA

LPS:

Lipopolysaccharide

ncRNA-a:

Noncoding RNA-activating

NPAS4:

Neuronal PAS domain 4

Pol II:

RNA polymerase II

RNA-seq:

Massively parallel RNA sequencing

SRF:

Serum response factor

siRNA:

Small interfering RNA

TF:

Transcription factor

TLR4:

Toll-like receptor 4

TSS:

Transcription start sites

TTX:

Tetrodotoxin

3C:

Chromosome conformation capture

3D-DSL:

Three-dimensional DNA selection and ligation

4C:

Circularized chromosome conformation capture

References

  • Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Bonn S, Zinzen RP, Girardot C et al (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44:148–156

    Article  PubMed  CAS  Google Scholar 

  • Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49:825–837

    Article  PubMed  CAS  Google Scholar 

  • Consortium EP, Birney E, Stamatoyannopoulos JA et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  Google Scholar 

  • Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    Article  PubMed  CAS  Google Scholar 

  • Creyghton MP, Cheng AW, Welstead GG et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107:21931–21936

    Article  PubMed  CAS  Google Scholar 

  • De Santa F, Barozzi I, Mietton F et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384

    Article  PubMed  Google Scholar 

  • Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  PubMed  CAS  Google Scholar 

  • Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (2001) MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 21:2249–2258

    Article  PubMed  CAS  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    Article  PubMed  CAS  Google Scholar 

  • Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64

    Article  PubMed  CAS  Google Scholar 

  • Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (2002) Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP)—the mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem 277:43168–43174

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  PubMed  CAS  Google Scholar 

  • Hah N, Murakami S, Nagari A, Danko CG, Kraus WL (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23:1210–1223

    Article  PubMed  CAS  Google Scholar 

  • He HH, Meyer CA, Shin H et al (2010) Nucleosome dynamics define transcriptional enhancers. Nat Genet 42:343–347

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Hon GC, Hawkins RD et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    Article  PubMed  CAS  Google Scholar 

  • Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Elefant F, Liebhaber SA, Cooke NE (2006) Locus control region transcription plays an active role in long-range gene activation. Mol Cell 23:365–375

    Article  PubMed  CAS  Google Scholar 

  • Hwang YC, Zheng Q, Gregory BD, Wang LS (2013) High-throughput identification of long-range regulatory elements and their target promoters in the human genome. Nucleic Acids Res 41:4835–4846

    Article  PubMed  CAS  Google Scholar 

  • John S, Sabo PJ, Thurman RE et al (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 43:264–U116

    Article  PubMed  CAS  Google Scholar 

  • Kagey MH, Newman JJ, Bilodeau S et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–435

    Article  PubMed  CAS  Google Scholar 

  • Kaikkonen MU, Spann NJ, Heinz S et al (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51:310–325

    Article  PubMed  CAS  Google Scholar 

  • Kim A, Zhao H, Ifrim I, Dean A (2007) Beta-globin intergenic transcription and histone acetylation dependent on an enhancer. Mol Cell Biol 27:2980–2986

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  PubMed  CAS  Google Scholar 

  • Koch CM, Andrews RM, Flicek P et al (2007) The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 17:691–707

    Article  PubMed  CAS  Google Scholar 

  • Koch F, Fenouil R, Gut M et al (2011) Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat Struct Mol Biol 18:956–963

    Article  PubMed  CAS  Google Scholar 

  • Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59

    Article  PubMed  CAS  Google Scholar 

  • Kowalczyk MS, Hughes JR, Garrick D et al (2012) Intragenic enhancers act as alternative promoters. Mol Cell 45:447–458

    Article  PubMed  CAS  Google Scholar 

  • Lai F, Orom UA, Cesaroni M et al (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494:497–501

    Article  PubMed  CAS  Google Scholar 

  • Lam MT, Cho H, Lesch HP et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511–515

    Article  PubMed  CAS  Google Scholar 

  • Li G, Ruan X, Auerbach RK et al (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:84–98

    Article  PubMed  CAS  Google Scholar 

  • Li W, Notani D, Ma Q et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–520

    Article  PubMed  CAS  Google Scholar 

  • Lupien M, Eeckhoute J, Meyer CA et al (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132:958–970

    Article  PubMed  CAS  Google Scholar 

  • Melo CA, Drost J, Wijchers PJ et al (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Ku MC, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–U552

    Article  PubMed  CAS  Google Scholar 

  • Orom UA, Derrien T, Beringer M et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  PubMed  CAS  Google Scholar 

  • Ostuni R, Piccolo V, Barozzi I et al (2013) Latent enhancers activated by stimulation in differentiated cells. Cell 152:157–171

    Article  PubMed  CAS  Google Scholar 

  • Petesch SJ, Lis JT (2012) Overcoming the nucleosome barrier during transcript elongation. Trends Genet 28:285–294

    Article  PubMed  CAS  Google Scholar 

  • Rada-Iglesias A, Bajpai R, Swigut T et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    Article  PubMed  CAS  Google Scholar 

  • Sandhu KS, Li GL, Poh HM et al (2012) Large-scale functional organization of long-range chromatin interaction networks. Cell Rep 2:1207–1219

    Article  PubMed  CAS  Google Scholar 

  • Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489:109–113

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Schwalie PC, Ross-Innes CS et al (2010) A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 20:578–588

    Article  PubMed  CAS  Google Scholar 

  • Thurman RE, Rynes E, Humbert R et al (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82

    Article  PubMed  CAS  Google Scholar 

  • Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  PubMed  CAS  Google Scholar 

  • Tuan D, Kong SM, Hu K (1992) Transcription of the hypersensitive site Hs2 enhancer in erythroid-cells. Proc Natl Acad Sci U S A 89:11219–11223

    Article  PubMed  CAS  Google Scholar 

  • Visel A, Blow MJ, Li Z et al (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Carroll JS, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19:631–642

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Garcia-Bassets I, Benner C et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390-+

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhuang JL, Iyer S et al (2012) Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22:1798–1812

    Article  PubMed  CAS  Google Scholar 

  • Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241

    Article  PubMed  CAS  Google Scholar 

  • Zentner GE, Tesar PJ, Scacheri PC (2011) Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res 21:1273–1283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize to those whose work is not cited due to space limitations. This work was supported by the National Institutes of Health [GM073120 and NS080779 to B.P.C].

Conflict of interest

The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Chadwick.

Additional information

Responsible Editor: Brian P. Chadwick, Kristin C. Scott, and Beth A. Sullivan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darrow, E.M., Chadwick, B.P. Boosting transcription by transcription: enhancer-associated transcripts. Chromosome Res 21, 713–724 (2013). https://doi.org/10.1007/s10577-013-9384-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9384-6

Keywords

Navigation