Skip to main content
Log in

Long noncoding RNAs as metazoan developmental regulators

  • REVIEW
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The study of long noncoding RNAs (lncRNAs) is still in its infancy with more putative RNAs identified than those with ascribed functions. Defined as transcripts that are longer than 200 nucleotides without a coding sequence, their numbers are on the rise and may well challenge protein coding transcripts in number and diversity. lncRNAs are often expressed at low levels and their sequences are frequently poorly conserved, making it unclear if they are transcriptional noise or bonafide effectors. Despite these limitations, inroads into their functions are being made and it is clear they make a contribution in regulating all aspects of biology. The early verdict on their activity, however, suggests the majority function as chromatin modifiers. A good proportion show a connection to disease highlighting their importance and the need to determine their function. The focus of this review is on lncRNAs which influence developmental processes which in itself covers a large range of known activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BRD4:

Bromodomain protein 4

CDK7:

Cyclin dependent kinase 7

CoREST:

Corepressor of RE1 silencing transcription factor

CTD:

C-terminal domain

DCC:

Dosage compensation complex

DNA:

Deoxyribonucleic acid

HOTAIR:

HOX antisense intergenic RNA

HOTTIP:

HOXA transcript at the distal tip

lncRNAs:

Long noncoding RNAs

mRNA:

Messenger RNA

ORF:

Open reading frame

P-TEFb:

Positive transcription elongation factor b

PcG:

Polycomb group

PRC2:

Polycomb repressive complex 2

PRE:

Polycomb response elements

RNA:

Ribonucleic acid

RNAP II:

RNA polymerase II

STAU1:

Staufen 1 protein

TINCR:

Terminal differentiation-induced ncRNA

TrxG:

Trithorax group

Xist:

X-inactive specific transcript

References

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375

    Article  PubMed  CAS  Google Scholar 

  • Akhtar MS et al (2009) TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 34:387–393

    Article  PubMed  CAS  Google Scholar 

  • Alekseyenko AA et al (2008) A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134:599–609

    Article  PubMed  CAS  Google Scholar 

  • Banfai B et al (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22:1646–1657

    Article  PubMed  CAS  Google Scholar 

  • Bender W, Fitzgerald D (2002) Transcription activates repressed domains in the Drosophila bithorax complex. Development 129:4923–4930

    PubMed  CAS  Google Scholar 

  • Bertani S et al (2011) The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43:1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Buske FA et al (2012) Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Gen Res 22:1372–138

    Article  CAS  Google Scholar 

  • Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  PubMed  CAS  Google Scholar 

  • Carninci P, Yasuda J, Hayashizaki Y (2008) Multifaceted mammalian transcriptome. Curr Opin Cell Biol 20:274–280

    Article  PubMed  CAS  Google Scholar 

  • Chu C et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678

    Article  PubMed  CAS  Google Scholar 

  • Clark MB et al (2011) The reality of pervasive transcription. PLoS Biol 9:e1000625

    Article  PubMed  CAS  Google Scholar 

  • Darrow EM, Chadwick BP (2013) Boosting transcription by transcription: enhancer associated transcripts. Chromosome Res. doi:10.1007/s10577-013-9384-6

  • Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  PubMed  CAS  Google Scholar 

  • Dieci G et al (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23:614–622

    Article  PubMed  CAS  Google Scholar 

  • Dinger ME et al (2008) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLOS Comput Biol 4:e1000176

    Article  PubMed  Google Scholar 

  • Dinger ME, Gascoigne DK, Mattick JS (2011) The evolution of RNAs with multiple functions. Biochimie 93:2013–2018

    Article  PubMed  CAS  Google Scholar 

  • Diribarne G, Bensaude O (2009) 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol 6:122–128

    Article  PubMed  CAS  Google Scholar 

  • Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  PubMed  CAS  Google Scholar 

  • Eissmann M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 2012(9):1076–1087

    Article  Google Scholar 

  • Fong YW, Zhou Q (2001) Stimulatory effect of splicing factors on transcriptional elongation. Nature 414:929–933

    Article  PubMed  CAS  Google Scholar 

  • Froberg JE, Yang L, Lee JT (2013) Guided by RNAs: X-inactivation as a model for lncRNA function. J Mol Biol 425:3698–3706

    Article  PubMed  CAS  Google Scholar 

  • Gilmour DS, Lis JT (1986) RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol Cell Biol 6:3984–3989

    PubMed  CAS  Google Scholar 

  • Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288

    Article  PubMed  CAS  Google Scholar 

  • Guenther MG et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88

    Article  PubMed  CAS  Google Scholar 

  • Gummalla M et al (2012) abd-A Regulation by the iab-8 Noncoding RNA. PLoS Genet 8:e1002720

    Article  PubMed  CAS  Google Scholar 

  • Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  PubMed  CAS  Google Scholar 

  • Guttman M et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–306

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    Article  PubMed  CAS  Google Scholar 

  • Haerty W, Ponting CP (2013) Mutations within lncRNAs are effectively selected against in fruitfly but not human. Genome Biol 14:R49

    Article  PubMed  Google Scholar 

  • Hangauer MJ, Vaughn IW, MacManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9, e1003569

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker A et al (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16:2054–2060

    Article  PubMed  CAS  Google Scholar 

  • Hindorff LA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367

    Article  PubMed  CAS  Google Scholar 

  • Hogga I, Karch F (2002) Transcription through the iab-7 cis-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. Development 129:4915–4922

    PubMed  CAS  Google Scholar 

  • Ilik et al (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51:156–173

    Article  PubMed  CAS  Google Scholar 

  • Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  PubMed  CAS  Google Scholar 

  • Jenny A et al (2006) A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133:2827–2833

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P et al (2005) Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 15:987–997

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488

    Article  PubMed  CAS  Google Scholar 

  • Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Article  PubMed  Google Scholar 

  • Kelley RL et al (1997) Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387:195–199

    Article  PubMed  CAS  Google Scholar 

  • Khalil AM et al (2009) Many human large intergenic noncoding RNAs associate with chromatin modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Bilinski S, Dougherty MT (2007) Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three dimensional and ultrastructural analysis. Exp Cell Res 313:1639–e1651

    Article  PubMed  CAS  Google Scholar 

  • Kornienko AE et al (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biology 11:59

    Article  PubMed  CAS  Google Scholar 

  • Kretz M et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235

    Article  PubMed  CAS  Google Scholar 

  • Krueger BJ et al (2010) The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. PLoS ONE 5, e12335

  • Kwek KY et al (2001) U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 9:800–805

    Google Scholar 

  • Latos PA et al (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472

    Article  PubMed  CAS  Google Scholar 

  • Lin MF, Jungreis I, Kellis M (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27:i275–i282

    Article  PubMed  CAS  Google Scholar 

  • Lipshitz HD, Peattie DA, Hogness DS (1987) Novel transcripts from the ultrabithorax domain of the bithorax complex. Genes Dev 1:307–322

    Article  PubMed  CAS  Google Scholar 

  • Magistri M et al (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet 28:389–396

    Article  PubMed  CAS  Google Scholar 

  • Maenner S et al (2010) 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 8:e1000276

    Article  PubMed  Google Scholar 

  • Maenner S et al (2013) ATP-dependent roX RNA Remodeling by the Helicase maleless enables specific association of MSL proteins. Mol Cell 51:174–184

    Article  PubMed  CAS  Google Scholar 

  • Mariner PD et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    Article  PubMed  CAS  Google Scholar 

  • Markussen FH et al (1995) Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121:3723–3732

    PubMed  CAS  Google Scholar 

  • Marques AC, Ponting CP (2009) Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol 10:R124

    Article  PubMed  Google Scholar 

  • Meller VH, Rattner BP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • MODencode Consortium (2010) Identification of functional elements and regulatory circuits by Drosophila MODencode. Science 330:1787–1797

    Article  Google Scholar 

  • Mondal T et al (2010) Characterization of the RNA content of chromatin. Genome Res 20:899–907

    Article  PubMed  CAS  Google Scholar 

  • Mondal T, Kanduri C (2013) Maintenance of epigenetic information: A noncoding RNA Perspective. Chromosome Res. doi:10.1007/s10577-013-9385-5

  • Morra R et al (2011) Role of the ATPase/helicase maleless (MLE) in the assembly, targeting, spreading and function of the male-specific lethal (MSL) complex of Drosophila. Epigenetics Chromatin 4:6

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S et al (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193:31–39

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S et al (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18:1487–1499

    Article  PubMed  CAS  Google Scholar 

  • Ørom UA et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  PubMed  Google Scholar 

  • Pathak RU et al (2013) AAGAG repeat RNA is an essential component of nuclear matrix in Drosophila. RNA Biol 10:564–571

    Article  PubMed  Google Scholar 

  • Petruk S et al (2006) Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127:1209–1221

    Google Scholar 

  • Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Belgard TG (2010) Transcribed dark matter: meaning or myth? Hum Mol Genet 19:R162–R168

    Article  PubMed  CAS  Google Scholar 

  • Rank G, Prestel M, Paro R (2002) Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol Cell Biol 22:8026–8034

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL et al (2003) The transcriptional activity of human Chromosome 22. Genes Dev 17:529–540

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX Loci by noncoding RNAs. Cell 129:1311–1323

    Google Scholar 

  • Ravasi T et al (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19

    Article  PubMed  CAS  Google Scholar 

  • Saunders A et al (2013) Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev 27:1146–1158

    Article  PubMed  CAS  Google Scholar 

  • Schmitt S, Prestel M, Paro R (2005) Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev 19:697–708

    Article  PubMed  CAS  Google Scholar 

  • Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7:e1002071

    Article  PubMed  CAS  Google Scholar 

  • Stuckenholz C, Meller VH, Kuroda MI (2003) Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. Genetics 164:1003–1014

    PubMed  CAS  Google Scholar 

  • Straub T et al (2008) The chromosomal high-affinity binding sites for the drosophila dosage compensation complex. PLoS Genet 4:e1000302

    Article  PubMed  Google Scholar 

  • Tang et al (2013) Long noncoding RNAs-related diseases, cancers, and drugs. Scientific World Journal 2013:943539

    PubMed  Google Scholar 

  • Ulitsky et al (2011) Conserved function of lincRNAs in vertebrate embryonic development despite. Rapid Sequence Evolution Cell 147:1537–1550

    CAS  Google Scholar 

  • Wang X et al (2007) Transcription elongation controls cell fate specification in the Drosophila embryo. Genes Dev 21:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Wang KC et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124

    Article  PubMed  CAS  Google Scholar 

  • Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932

    Article  PubMed  CAS  Google Scholar 

  • Wu L et al (2011) The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell 43:132–144

    Article  PubMed  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 106:5569–5574

    Article  PubMed  CAS  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2011) B2 RNA represses TFIIH phosphorylation of RNA polymerase II. Transcription 2:45–49

    Article  PubMed  Google Scholar 

  • Yin QF et al (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48:219–230

    Article  PubMed  CAS  Google Scholar 

  • Yoo EJ, Cooke NE, Liebhaber SA (2012) An RNA-independent linkage of noncoding transcription to long-range enhancer function. Mol Cell Biol 32:2020–2029

    Article  PubMed  CAS  Google Scholar 

  • Young RS et al (2012) Identification and properties of 1119 lincRNA loci in the Drosophila melanogaster genome. Genome Biol Evol 4:427–442

    Article  PubMed  CAS  Google Scholar 

  • Zeitlinger J et al (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39:1512–1516

    Article  PubMed  CAS  Google Scholar 

  • Zhang J et al (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94:515–524

    Article  PubMed  CAS  Google Scholar 

  • Zhang B et al (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2:111–123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank the Biomedical Sciences Department, College of Medicine at Florida State University for the financial support and the members of my lab for comments on the manuscript.

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamila I. Horabin.

Additional information

Responsible Editor: Brian P. Chadwick, Kristin C. Scott, and Beth A. Sullivan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horabin, J.I. Long noncoding RNAs as metazoan developmental regulators. Chromosome Res 21, 673–684 (2013). https://doi.org/10.1007/s10577-013-9382-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9382-8

Keywords

Navigation