Skip to main content
Log in

Predicting nucleosome binding motif set and analyzing their distributions around functional sites of human genes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Nucleosome positioning and remodeling correlate closely with the DNA sequence bias. It is possible that DNA motifs, interacted preferentially with histone octamers, direct the nucleosome positioning. Exploring the complete set of nucleosome binding motifs is of crucial importance for our understanding of the roles of nucleosomes in gene regulation. Based on the 8-mer multimodal spectra of the human genome, a systematic nucleosome binding motif set is inferred. Its structural features and density distributions for different types of sequences are consistent with the published data. Distributions of these motifs around several functional sites could describe the ground state of nucleosome distribution of these regions. Our results strongly support that the predicted nucleosome binding motif set is reliable. Our findings indicate that the recognition of distinct functional sites or sequences could be greatly improved by the help of a nucleosome array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CDS:

Coding sequences

IGS:

Intergenic sequences

NPR:

Nucleosome positioning regions

NFR:

Nucleosome-free regions

RF:

Relative frequency

TSS:

Transcription start sites

TTS:

Transcription termination sites

References

  • Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL (2004) Global nucleosome occupancy in yeast. Genome Biol 5:R62

    Article  PubMed  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Luo LF (2009) Identification of H2A.Z and H2A nucleosomes based on histone methylation information. Acta Biophysica Sinica 25:269–274

    CAS  Google Scholar 

  • Chen K, Meng Q, Ma L et al (2008) A novel DNA sequence periodicity decodes nucleosome positioning. Nucleic Acids Res 36:6228–6236

    Article  PubMed  Google Scholar 

  • Chen K, Wang L, Yang M et al (2010) Sequence signatures of nucleosome positioning in Caenorhabditis elegans. Geno Proteo & Bioinfo 8:92–102

    Article  CAS  Google Scholar 

  • Choi J, Bae J-B, Lyu J, Kim T-Y, Kim Y-J (2009) Nucleosome deposition and DNA methylation at coding region boundaries. Genome Biol 10:R89

    Article  PubMed  Google Scholar 

  • Chor B, Horn D, Goldman N, Levy Y, Massingham T (2009) Genomic DNA k-mer spectra: models and modalities. Genome Biol 10:R108

    Article  PubMed  Google Scholar 

  • Chung HR, Vingron M (2009) Sequence-dependent nucleosome positioning. J Mol Biol 386:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Cohanim AB, Haran TE (2009) The coexistence of the nucleosome positioning code with the genetic code on eukaryotic genomes. Nucleic Acids Res 37:6466–6476

    Article  PubMed  CAS  Google Scholar 

  • Collings CK, Fernandez AG, Pitschka CG, Hawkins TB, Anderson JN (2010) Oligonucleotide sequence motifs as nucleosome positioning signals. PLoS One 5:e10933

    Article  PubMed  Google Scholar 

  • Csürös M, Noe L, Kucherov G (2007) Reconsidering the significance of genomic word frequencies. Trends Genet 23:543–546

    Article  PubMed  Google Scholar 

  • Cui P, Zhang L, Lin Q et al (2010) A novel mechanism of epigenetic regulation: nucleosome-space occupancy. Biochem and Biophys Research Commun 391:884–889

    Article  CAS  Google Scholar 

  • Dennis JH, Fan HY, Reynolds SM et al (2007) Independent and complementary methods for large-scale structural analysis of mammalian chromatin. Genome Res 17:928–939

    Article  PubMed  CAS  Google Scholar 

  • Dermitzakis ET, Reymond A, Scamuffa N et al (2003) Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs). Science 302:1033–1035

    Article  PubMed  CAS  Google Scholar 

  • Fernandez AG, Anderson JN (2007) Nucleosome positioning determinants. J Mol Biol 371:649–668

    Article  PubMed  CAS  Google Scholar 

  • Field Y, Kaplan N, Fondufe-Mittendorf Y et al (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4:e1000216

    Article  PubMed  Google Scholar 

  • FitzGerald PC, Shlyakhtenko A, Mir AA, Vinson C (2004) Clustering of DNA sequences in human promoters. Genome Res 14:1562–1574

    Article  PubMed  CAS  Google Scholar 

  • Gerstein MB, Bruce C, Rozowsky JS et al (2007) What is a gene, post-ENCODE? History and updated definition. Genome Res 17:669–681

    Article  PubMed  CAS  Google Scholar 

  • Glazko GV, Koonin EV, Rogozin IB, Shabalina SA (2003) A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends Genet 19:119–124

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Dennis J, Thurman RE et al (2008) Predicting human nucleosome occupancy from primary sequence. PLoS Comput Biol 4:e1000134

    Article  PubMed  Google Scholar 

  • Hainer SJ, Pruneski JA, Mitchell RD, Monteverde RM, Martens JA (2011) Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev 25:29–40

    Article  PubMed  CAS  Google Scholar 

  • Hall MA, Shundrovsky A, Bai L et al (2009) High-resolution dynamic mapping of histone–DNA interactions in a nucleosome. Nat Struct Mol Biol 16:124–129

    Article  PubMed  CAS  Google Scholar 

  • Hao B, Lee HC, Zhang S (2000) Fractals related to long DNA sequences and complete genomes. Chaos Soliton Fract 11:825–836

    Article  CAS  Google Scholar 

  • Hirota K, Miyoshi T, Kugou K et al (2008) Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456:130–134

    Article  PubMed  CAS  Google Scholar 

  • Iyer V, Struhl K (1995) Poly (dA: dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 14:2570–2579

    PubMed  CAS  Google Scholar 

  • Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161–172

    Article  PubMed  CAS  Google Scholar 

  • Kaplan N, Moore IK, Fondufe-Mittendorf Y et al (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366

    Article  PubMed  CAS  Google Scholar 

  • Lankas F, Sponer J, Langowski J, Cheatham TE III (2003) DNA base pair step deformability inferred from molecular dynamics simulations. Biophy J 85:2872–2883

    Article  CAS  Google Scholar 

  • Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36:900–905

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Tillo D, Bray N et al (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analyses of the human genome. Nature 409:847–849

    Article  PubMed  CAS  Google Scholar 

  • Maston GA, Evans SK, Green MR (2006) Transcriptional regulatory elements in the human genome. Annu Rev Genom Hum Genet 7:29–59

    Article  CAS  Google Scholar 

  • Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) DNA sequence-dependent deformability deduced from protein–DNA crystal complexes. Proc Natl Acad Sci USA 95:11163–11168

    Article  PubMed  CAS  Google Scholar 

  • Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25:244–248

    Article  PubMed  CAS  Google Scholar 

  • Peckham HE, Thurman RE, Fu Y et al (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17:1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Prendergast JG, Semple CA (2011) Widespread signatures of recent selection linked to nucleosome positioning in the human lineage. Genome Res 21:1777–1787

    Article  PubMed  CAS  Google Scholar 

  • Rippe K, Schrader A, Riede P et al (2007) DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc Natl Acad Sci USA 104:15635–15640

    Article  PubMed  CAS  Google Scholar 

  • Schones DE, Cui K, Cuddapah S et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon–intron structure. Nat Struc Mol Biol 16:990–995

    Article  CAS  Google Scholar 

  • Segal E, Widom J (2009) What controls nucleosome positions? Trends Genet: TIG 25:335–343

    Article  PubMed  CAS  Google Scholar 

  • Segal E, Fondufe-Mittendorf Y, Chen L et al (2006) A genomic code for nucleosome positioning. Nature 442:772–778

    Article  PubMed  CAS  Google Scholar 

  • Shabalina SA, Spiridonov NA (2004) The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biol 5:105

    Article  PubMed  Google Scholar 

  • Shivaswamy S, Bhinge A, Zhao Y et al (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6:e65

    Article  PubMed  Google Scholar 

  • Teif VB, Rippe K (2009) Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res 37:5641–5655

    Article  PubMed  CAS  Google Scholar 

  • Tilgner H, Guigo R (2010) From chromatin to splicing RNA-processing as a total artwork. Epigenetics 3:180–184

    Article  Google Scholar 

  • Tillo D, Hughes T (2009) G + C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 10:442

    Article  PubMed  Google Scholar 

  • Tuller T, Chor B, Nelson N (2007) Forbidden penta-peptides. Protein Sci 16:2251–2259

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Zhao X, Cai L (2011) Prediction of nucleosome occupancy in Saccharomyces cerevisiae using position-correlation scoring function. Genomics 98:359–366

    Article  PubMed  CAS  Google Scholar 

  • Yadon AN, Van de Mark D, Basom R et al (2010) Chromatin remodeling around nucleosome-free regions leads to repression of noncoding RNA transcription. Mol Cell Biol 30:5110–5122

    Article  PubMed  CAS  Google Scholar 

  • Yuan GC, Liu YJ, Dion MF et al (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Pei Z, Liu J, Qin S, Cai L (2010) Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis. Chromosome Res 18:777–785

    Article  PubMed  Google Scholar 

  • Zuo Y-C, Li Q-Z (2011) Identification of TATA and TATA-less promoters in plant genomes by integrating diversity measure, GC-Skew and DNA geometric flexibility. Genomics 97:112–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Sciences Foundation of China (30660044) and “211” Project Trained Creative Talents of Inner Mongolia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Additional information

Responsible Editor: Tatsuo Fukagawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 651 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, T., Li, H., Zhao, X. et al. Predicting nucleosome binding motif set and analyzing their distributions around functional sites of human genes. Chromosome Res 20, 685–698 (2012). https://doi.org/10.1007/s10577-012-9305-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-012-9305-0

Keywords

Navigation