Skip to main content
Log in

Synapsis, recombination, and chromatin remodeling in the XY body of armadillos

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Three xenarthrans species Chaetophractus villosus, Chaetophractus vellerosus, and Zaedyus pichiy have been used for the analysis of the structure, behavior, and immunochemical features of the XY body during pachytene. In all these species, the sex chromosomes form an XY body easily identifiable in thin sections by the special and regular packing of the chromatin fibers of the internal region of the XY body (“differential” regions) and those of the peripheral region (synaptic region). Spermatocyte spreads show a complete synapsis between the X- and the Y-axis, which lasts up to the end of pachytene. From the early pachytene substages to the late ones, the X-axis develops prominent branches, which in late pachytene span the synaptic region. Synapsis is regular as shown by SYCP1 labeling. Axial development is followed by SYCP3 labeling and in the asynaptic region of the X-axis by BRCA1. Gamma-H2AX labels exclusively the differential (asynaptic) region of the X chromosome. A single focus is labeled by MLH1 in the synaptic region. The location of this MLH1 focus spans from 0.3 to 1.6 μm from the telomere in the analyzed xenarthrans, covering approximately half of the Y-axis length. It is concluded that xenarthrans, as basal placental mammals, harbor the largest pseudoautosomal regions of presently analyzed mammals, and shows the typical features of meiotic sex chromosome inactivation (MSCI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

AMEL:

AMELogenin

BRCA1:

BReast CAncer 1

Chr.:

Chromosome

CREST:

Calcinosis Raynaud’s phenomenon, Esophageal dysmotility, Sclerodactyly, and Telangiectasia

DABCO:

1,4-DiAzoBiCyclo-(2,2,2)-Octane

DAPI:

4,6-DiAmino-2-PhenylIndol

DNA:

Deoxyribonucleic acid

EM:

Electron Microscopy

FISH:

Fluorescence In Situ Hybridization

FITC:

Fluorescein IsoThioCyanate

MLH1:

MutL Homolog 1

MSCI:

Meiotic Sex Chromosomes Inactivation

MYA:

Million Years Ago

PAB:

PAR Boundary

PAR:

PseudoAutosomal Region

PBS:

Phosphate Buffer Saline

RN:

Recombination Nodule

RNAPol II:

RNA polymerase type II

SC:

Synaptonemal Complex

SMC3:

Structural Maintenance of Chromosomes 3

SYCP1:

SYnaptonemal Complex Protein 1

SYCP3:

SYnaptonemal Complex Protein 3

TRITC:

Tetramethyl Rhodamine IsoThioCyanate

XAR:

X-Added Region

XCI:

X-Chromosome Inactivation

XCR:

X Conserved Region

XG:

Xg blood group antigen

XIST:

X-Inactive Specific Transcript

γ-H2A.X:

phosphorylated (Ser139) Histone 2 A.X

References

  • Anderson LK, Reeves A, Webb LM, Ashley T (1999) Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151:1569–1579

    PubMed  CAS  Google Scholar 

  • Baumann C, Daly CM, McDonnell SM, Viveiros SM, De la Fuente R (2011) Chromatin configuration and epigenetic landscape at the sex chromosome bivalent during equine spermatogenesis. Chromosoma 120:227–244

    Article  PubMed  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JMA (2009) The consequences of asynapsis for mammalian meiosis. Nature Rev Genet 10:207–216

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Chaumeil J, Waters PD, Koina E, Gilbert C, Robinson TJ, Graves JA (2011) Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals. PLoS One 6:e19040

    Article  PubMed  CAS  Google Scholar 

  • Deakin JE, Chaumeil J, Hore TA, Graves JAM (2009) Unraveling the evolutionary origins of X chromosome inactivation in mammals: insight from marsupials and monotremes. Chrom Res 17:671–685

    Article  PubMed  CAS  Google Scholar 

  • Delgado CL, Waters PD, Gilbert C, Robinson TJ, Graves JA (2009) Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years. Chromosome Res 17:917–926

    Article  PubMed  Google Scholar 

  • Franco MJ, Sciurano RB, Solari AJ (2007) Protein immunolocalization supports the presence of identical mechanisms of XY body formation in eutherians and marsupials. Chromosome Res 15:815–824

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (1995) The origin and function of the mammalian Y chromosome and Y-borne genes—an evolving understanding. Bioessays 17:311–320

    Article  PubMed  CAS  Google Scholar 

  • Grinberg MA, Sullivan MM, Benirschke K (1966) Investigation with tritiated thymidine of the relationship between the sex c hromosomes, sex chromatin and the drumstick in the cells of the female nine-banded armadillo, Dasypus novemcinctus. Cytogenetics 5:64–74

    Article  PubMed  CAS  Google Scholar 

  • Hallstrôm BM, Janke A (2010) Mammalian evolution may not be strictly bifurcating. Mol Biol Evol 27:2804–2816

    Article  PubMed  Google Scholar 

  • Handel MA (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296:57–63

    Article  PubMed  CAS  Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1 step method. Experientia 36:1014–1015

    Article  PubMed  CAS  Google Scholar 

  • Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N (2003) The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci USA 100:5258–5263

    Article  PubMed  CAS  Google Scholar 

  • Mangs AH, Morris BJ (2007) The human pseudoautosomal region (PAR): origin, function and future. Curr Genomics 8:129–136

    Article  CAS  Google Scholar 

  • Moses MJ, Counce SJ, Paulson DF (1975) Synaptonemal complex complement of man in spreads of spermatocytes, with details of the sex chromosome pair. Science 187:363–365

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W. (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421

    Google Scholar 

  • Namekawa SH, VandeBerg JL, McCarrey JR, Lee JT (2007) Sex chromosome silencing in the marsupial male germ line. Proc Natl Acad Sci USA 104:9730–9735

    Article  PubMed  CAS  Google Scholar 

  • Perry J, Palmer S, Gabriel A, Ashworth A (2001) A short pseudoautosomal region in laboratory mice. Genome Res 11:1826–1832

    PubMed  CAS  Google Scholar 

  • Rappold GA (1993) The pseudoautosomal regions of the human sex chromosomes. Hum Genetics 92:315–324

    Article  CAS  Google Scholar 

  • Raudsepp T, Das PJ, Avila F, Chowdhary BP (2011) The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex Dev. doi:10.1159/000330627

  • Redi CA, Zacharias H, Merani S, Oliveira-Miranda M, Aguilera M, Zuccotti M, Garagna S, Capanna E (2005) Genome sizes in Afrotheria, Xenarthra, Euarchontoglires, and Laurasiatheria. J Hered 96:485–493

    Article  PubMed  CAS  Google Scholar 

  • Reeves A (2001) MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44:439–443

    Article  PubMed  CAS  Google Scholar 

  • Rens W, Grützner F, O’brien PC, Fairclough H, Graves JAM, Ferguson-Smith MA (2004) Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA 101:16257–16261

    Article  PubMed  CAS  Google Scholar 

  • Rohozinski J, Agoulnik AL, Boettger-Tong HL, Bishop CE (2002) Successful targeting of mouse Y chromosome genes using a site-directed insertion vector. Genesis 32:1–7

    Article  PubMed  CAS  Google Scholar 

  • Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, de Rooij DG, Burgoyne PS, Turner JM (2010) Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20:2117–2123

    Article  PubMed  CAS  Google Scholar 

  • Scavone MDP, Oliveira C, Bagagli E, Foresti F (2000) Analysis of the synaptonemal complex of the nine-banded armadillo, Dasypus novemcinctus. Genet Mol Biol 23:613–616

    Article  Google Scholar 

  • Sciurano RB, Merani MS, Bustos J, Solari AJ (2006) Synaptonemal complexes and XY behavior in two species of argentinian armadillos: Chaetophractus villosus and Dasypus hybridus. Biocell 30:57–66

    PubMed  CAS  Google Scholar 

  • Sciurano RB, Luna Hisano CV, Rahn MI, Brugo Olmedo S, Rey Valzacchi G, Coco R, Solari AJ (2009) Focal spermatogenesis originates in euploid germ cells in classical Klinefelter patients. Hum Reprod 24:2353–2360

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1970) The spatial relationship of the X and Y chromosomes during meiotic prophase in mouse spermatocytes. Chromosoma 29:217–236

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1974) The behavior of the XY pair in mammals. Internat Rev Cytol 38:273–317

    Article  CAS  Google Scholar 

  • Solari AJ (1994) Sex chromosomes and sex determination in vertebrates. CRC, Florida

    Google Scholar 

  • Solari AJ, Ashley T (1977) Ultrastructure and behavior of the achiasmatic, telosynaptic XY pair of the sand rat (Psammomys obesus). Chromosoma 62(4):319–336

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ, Merani MS, Burgos MH (1993) Dissociation of the synaptonemal complex in the XY body of Galea musteloides (Rodentia, Caviidae). Biocell 17:25–37

    Google Scholar 

  • Turner JMA (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831

    Article  PubMed  CAS  Google Scholar 

  • Turner JMA, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng C, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nature Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Waters PD, Wallis MC, Graves JAM (2007a) Mammalian sex—origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol 18:389–400

    Article  PubMed  CAS  Google Scholar 

  • Waters PD, Ruiz-Herrera A, Dobigny G, Garcia Caldés M, Robinson TJ (2007b) Sex chromosomes of basal placental mammals. Chromosoma 116:511–518

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The able technical help of C. Deparci is gratefully acknowledged. This work was supported by UBACYT 20020100100030 (AJS), PICT-2010-2718 (RBS), and PIP 11220090100204 (“Phylogeny and Evolution of South American Xenarthrans, MSM”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto J. Solari.

Additional information

Responsible Editor: Walther Traut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciurano, R.B., Rahn, M.I., Rossi, L. et al. Synapsis, recombination, and chromatin remodeling in the XY body of armadillos. Chromosome Res 20, 293–302 (2012). https://doi.org/10.1007/s10577-012-9273-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-012-9273-4

Keywords