Abstract
The chiropteran fauna of Madagascar comprises eight of the 19 recognized families of bats, including the endemic Myzopodidae. While recent systematic studies of Malagasy bats have contributed to our understanding of the morphological and genetic diversity of the island’s fauna, little is known about their cytosystematics. Here we investigate karyotypic relationships among four species, representing four families of Chiroptera endemic to the Malagasy region using cross-species chromosome painting with painting probes of Myotis myotis: Myzopodidae (Myzopoda aurita, 2n = 26), Molossidae (Mormopterus jugularis, 2n = 48), Miniopteridae (Miniopterus griveaudi, 2n = 46), and Vespertilionidae (Myotis goudoti, 2n = 44). This study represents the first time a member of the family Myzopodidae has been investigated using chromosome painting. Painting probes of M. myotis were used to delimit 29, 24, 23, and 22 homologous chromosomal segments in the genomes of M. aurita, M. jugularis, M. griveaudi, and M. goudoti, respectively. Comparison of GTG-banded homologous chromosomes/chromosomal segments among the four species revealed the genome of M. aurita has been structured through 14 fusions of chromosomes and chromosomal segments of M. myotis chromosomes leading to a karyotype consisting solely of bi-armed chromosomes. In addition, chromosome painting revealed a novel X-autosome translocation in M. aurita. Comparison of our results with published chromosome maps provided further evidence for karyotypic conservatism within the genera Mormopterus, Miniopterus, and Myotis. Mapping of chromosomal rearrangements onto a molecular consensus phylogeny revealed ancestral syntenies shared between Myzopoda and other bat species of the infraorders Pteropodiformes and Vespertilioniformes. Our study provides further evidence for the involvement of Robertsonian (Rb) translocations and fusions/fissions in chromosomal evolution within Chiroptera.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- CBG-banding:
-
C-banding by treatment with barium hydroxide
- GTG-banding:
-
G-banding by trypsin digestion
- IHB:
-
Intercalary heterochromatic block
- MAU:
-
Myzopoda aurita
- MGO:
-
Myotis goudoti
- MGR:
-
Miniopterus griveaudi
- MJU:
-
Mormopterus jugularis
- MMY:
-
Myotis myotis
- Rb:
-
Robertsonian
- X-A:
-
X-autosome translocation
- Zoo-FISH:
-
Zoo-fluorescence in situ hybridization
References
Ao L, Gu X, Feng Q et al (2006) Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Cytogenet Genome Res 115:145–153
Ao L, Mao X, Nie W et al (2007) Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Res 15:257–267
Baker RJ, Jordan RG (1970) Chromosomal studies of some neotropical bats of the families Emballonuridae, Noctilionidae, Natalidae and Vespertilionidae. Caryologia 23:595–604
Baker JW, Patton JL (1967) Karyotypes and karyotypic variation of North American vespertilionid bats. J Mammal 48:270–286
Baker RJ, Bass RA (1979) Evolutionary relationships of the Brachyphylllinae to the Glossophagine genera Glossophaga and Monophyllus. J Mammal 60:364–372
Baker RJ, Bickham JW (1980) Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa. Syst Zool 29:239–253
Baker RJ, Qumsiyeh MB (1988) Methods in chiropteran mitotic studies. In: Kunz TH (ed) Ecological and behavioral methods for the study of bats. Smithsonian Press, Washington, DC, pp 425–435
Baker RJ, Genoways HH, Seyfarth PA (1981) Results of the Alcoa Foundation-Suriname expeditions. VI. Additional chromosomal data for bats (Mammalia: Chiroptera) from Suriname. Ann Carnegie Mus 50:333–344
Bickham JW (1979a) Banded karyotypes of 11 species of American bats (genus Myotis). Cytologia 44:789–797
Bickham JW (1979b) Chromosomal variation and evolutionary relationships of vespertilionid bats. J Mammal 60:350–363
Bickham JW, Daniel MJ, Haiduk MW (1980) Karyotype of Mystacina tuberculata (Chiroptera: Mystacinidae). J Mammal 61:322–324
Bickham JW, McBee K, Schlitter DA (1986) Chromosomal variation among seven species of Myotis (Chiroptera: Vespertilionidae). J Mammal 67:746–750
Dobigny G, Ozouf-Costaz C, Bonilla C, Volobouev V (2004) Viability of X-autosome translocations in mammals: an epigenomic hypothesis from a rodent case-study. Chromosoma 113:34–41
Eger JL, Mitchell L (1996) Biogeography of the bats of Madagascar. Biogéographie de Madagascar 1996:321–328
Eger JL, Mitchell L (2003) Chiroptera, bats. In: Goodman SM, Benstead JP (eds) The Natural History of Madagascar. University of Chicago Press, Chicago, Illinois, pp 1287–1298
Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886
Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962
Gannon WL, Sikes RS, Animal Care and Use Committee of the American Society of Mammalogists (2007) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 88:809–823
Gardner JL (1977) Chromosomal variation in Vampyressa and a review of chromosomal evolution in the Phyllostomidae (Chiroptera). Syst Zool 26:300–318
Goodman SM, Maminirina CP, Weyeneth N et al (2009a) The use of molecular and morphological characters to resolve the taxonomic identity of cryptic species: the case of Miniopterus manavi (Chiroptera: Miniopteridae). Zool Scr 38:339–363
Goodman SM, Maminirina CP, Bradman HM et al (2009b) The use of molecular phylogenetic and morphological tools to indentify cryptic and paraphyletic species: examples from the diminutive long-fingered bats (Chiroptera: Miniopteridae: Miniopterus) on Madagascar. Am Mus Novit 3669:1–34
Hood CS, Baker RJ (1986) G- and C-band chromosome studies of bats of the family Emballonuridae. J Mammal 67:705–711
Hood CS, Schlitter DA, Georgudaki JI, Yenbutra S, Baker RJ (1988) Chromosomal studies of bats (Mammalia: Chiroptera) from Thailand. Ann Carnegie Mus 57:99–109
Hoofer SR, Reeder SA, Hansen EW, Van Den Bussche RA (2003) Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). J Mammal 84:809–821
Hsu TC, Baker RJ, Utakoji T (1968) The multiple sex chromosome system of American leaf-nosed bats (Chiroptera, Phyllostomidae). Cytogenetics 7:27–38
Kerridge DC, Baker RJ (1978) Natalus micropus. Mamm Species 114:1–3
Koopman KF (1994) Chiroptera: systematics. In: Niethammer J, Schliemann H, Starck D (eds) Handbook of Zoology, vol 8. Walter de Gruyter Press, Berlin, pp 1–217
Lamb JM, Ralph TMC, Goodman SM et al (2008) Phylogeography and predicted distribution of African-Arabian and Malagasy populations of giant mastiff bats, Otomops spp. Acta Chiropt 10:21–40
Lyon MF (1968) Chromosomal and subchromosomal inactivation. Annu Rev Genet 2:31–52
Mao X, Wang J, Su W et al (2007) Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison. Chromosome Res 15:835–848
Mao X, Nie W, Wang J et al (2008) Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving interfamily phylogenetic relationships. Chromosome Res 16:155–170
Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24:1553–1561
O’Brien J, Mariani C, Olson L et al (2009) Multiple colonisations of the western Indian Ocean by Pteropus fruit bats (Megachiroptera: Pteropodidae): the furthest islands were colonised first. Mol Phylogenet Evol 51:294–303
Parish DA, Vise P, Wichman HA, Bull JJ, Baker RJ (2002) Distribution of LINES and other repetitive elements in the karyotype of the bat Carollia: implications for X-chromosome inactivation. Cytogenet Genome Res 96:191–197
Patton JC, Baker RJ (1978) Chromosomal homology and evolution of Phyllostomoid bats. Syst Zool 27:449–462
Peterson RL, Eger JL, Mitchell L (1995) Chiroptêres. Vol 84. Fauna de Madagascar. Museum National d’Histoire Naturelle, Paris, pp 1–204
Pieczarka JC, Nagamachi CY, O’Brien PCM et al (2005) Reciprocal chromosome painting between two South American bats: Carollia brevicuda and Phyllostomus hastatus (Phyllostomidae, Chiroptera). Chromosome Res 13:339–347
Ratrimomanarivo FH, Vivian J, Goodman SM (2007) Morphological and molecular assessment of the specific status of Mops midas (Chiroptera: Molossidae) from Madagascar and Africa. Afr Zool 42:237–253
Ratrimomanarivo FH, Goodman SM, Hoosen N, Taylor PJ, Lamb J (2008) Morphological and molecular variation in Mops leucostigma (Chiroptera: Molossidae) of Madagascar and the Comoros: phylogeny, phylogeography, and geographic variation. Mitt Hamb Zool Mus Inst 105:57–101
Russell AL, Goodman SM, Cox MP (2008) Coalescent analyses support multiple mainland-to-island dispersals in the evolution of Malagasy Triaenops bats (Chiroptera: Hipposideridae). J Biogeogr 35:995–1003
Seabright M (1971) A rapid staining technique for human chromosomes. Lancet 2:971–972
Sharp AJ, Spotswood HT, Robinson DO, Turner BM, Jacobs PA (2002) Molecular and cytogenetic analysis of the spreading of X-inactivation in X;autosome translocations. Hum Mol Genet 11:3145–3156
Simmons NB (1998) A reappraisal of interfamilial relationships of bats. In: Kunz TH, Racey PA (eds) Bat Biology and Conservation. Smithsonian Institution Press, Washington DC, pp 3–26
Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: a Taxonomic and Geographic Reference, vol 1, 3rd edn. Johns Hopkins University Press, Baltimore, MD, pp 312–529
Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archanycteris, Hassianycteris and Palaeochiroptera to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1–182
Smith JD (1976) Chiropteran evolution. In: Baker RJ, Jones JK, Carter DC (eds) Biology of the bats of the new world family Phyllostomidae, vol. I. [Special Publications, Museum of Texas Tech University 10: 1–218], pp 46–69
Sreepada KS, Koubínová D, Konečny A et al (2008) Karyotypes of three species of molossid bats (Molossidae, Chiroptera) from India and western Africa. Folia Zool 57:347–357
Stadelmann B, Jacobs DS, Schoeman MC, Ruedi M (2004) Phylogeny of Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropt 6:177–192
Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306
Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy MJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584
Telenius H, Pelmear AH, Tunnacliffe A et al (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Gene Chromosome Canc 4:257–263
Tucker PK, Bickham JW (1989) Heterochromatin and sex-chromosome variation in bats of the genus Carollia (Chiroptera: Phyllostomidae). J Mammal 70:174–179
Van Den Bussche RA, Hoofer SR (2001) Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. J Mammal 82:320–327
Van Den Bussche RA, Reeder SA, Hansen EW, Hoofer SR (2003) Utility of the dentin matrix protein 1 (DMP1) gene for resolving mammalian intraordinal phylogenetic relationships. Mol Phylogenet Evol 26:89–101
Volleth M, Yong HS (1987) Glischropus tylophus, the first known old-world bat with an X-autosome translocation. Cell Mol Life Sci 43:922–924
Volleth M, Heller KG (2007) Chromosome number reduction accompanied by extensive heterochromatin addition in the bat Glauconycteris beatrix (Mammalia; Chiroptera, Vespertilionidae). Cytogenet Genome Res 119:245–247
Volleth M, Klett C, Kollak A et al (1999) ZOO-FISH analysis in a species of the order Chiroptera: Glossophaga soricina (Phyllostomidae). Chromosome Res 7:57–64
Volleth M, Heller KG, Pfeiffer R, Hameister H (2002) A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Res 10:477–497
Weyeneth N, Goodman SM, Stanley WT, Ruedi M (2008) The biogeography of Miniopterus bats Chiroptera: Miniopteridae) from the Comoro Archipelago inferred from mitochondrial DNA. Mol Ecol 17:5205–5219
Wienberg J, Stanyon R (1997) Comparative painting of mammalian chromosomes. Curr Opin Genet Dev 7:784–791
Yong HS, Dhaliwal SS (1976) Chromosomes of the fruit-bat subfamily Macroglossinae from peninsular Malaysia. Cytologia 41:85–89
Acknowledgments
This study was supported by grants awarded by the John D. and Catherine T. MacArthur Foundation (to SMG), Volkswagen Foundation (to SMG, PJT and JML), South African National Research Foundation (to RVR, LRR), and the South African Biosystematics Initiative (to JML). FY is supported by the Wellcome Trust. We thank F. Ratrimomanarivo, C. Maminirina, and B. Ramasindrazana for their assistance with fieldwork and specimen collection.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Responsible Editor: Yoichi Matsuda.
Rights and permissions
About this article
Cite this article
Richards, L.R., Rambau, R.V., Lamb, J.M. et al. Cross-species chromosome painting in bats from Madagascar: the contribution of Myzopodidae to revealing ancestral syntenies in Chiroptera. Chromosome Res 18, 635–653 (2010). https://doi.org/10.1007/s10577-010-9139-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10577-010-9139-6


