Skip to main content
Log in

Cross-species chromosome painting in bats from Madagascar: the contribution of Myzopodidae to revealing ancestral syntenies in Chiroptera

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The chiropteran fauna of Madagascar comprises eight of the 19 recognized families of bats, including the endemic Myzopodidae. While recent systematic studies of Malagasy bats have contributed to our understanding of the morphological and genetic diversity of the island’s fauna, little is known about their cytosystematics. Here we investigate karyotypic relationships among four species, representing four families of Chiroptera endemic to the Malagasy region using cross-species chromosome painting with painting probes of Myotis myotis: Myzopodidae (Myzopoda aurita, 2n = 26), Molossidae (Mormopterus jugularis, 2n = 48), Miniopteridae (Miniopterus griveaudi, 2n = 46), and Vespertilionidae (Myotis goudoti, 2n = 44). This study represents the first time a member of the family Myzopodidae has been investigated using chromosome painting. Painting probes of M. myotis were used to delimit 29, 24, 23, and 22 homologous chromosomal segments in the genomes of M. aurita, M. jugularis, M. griveaudi, and M. goudoti, respectively. Comparison of GTG-banded homologous chromosomes/chromosomal segments among the four species revealed the genome of M. aurita has been structured through 14 fusions of chromosomes and chromosomal segments of M. myotis chromosomes leading to a karyotype consisting solely of bi-armed chromosomes. In addition, chromosome painting revealed a novel X-autosome translocation in M. aurita. Comparison of our results with published chromosome maps provided further evidence for karyotypic conservatism within the genera Mormopterus, Miniopterus, and Myotis. Mapping of chromosomal rearrangements onto a molecular consensus phylogeny revealed ancestral syntenies shared between Myzopoda and other bat species of the infraorders Pteropodiformes and Vespertilioniformes. Our study provides further evidence for the involvement of Robertsonian (Rb) translocations and fusions/fissions in chromosomal evolution within Chiroptera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CBG-banding:

C-banding by treatment with barium hydroxide

GTG-banding:

G-banding by trypsin digestion

IHB:

Intercalary heterochromatic block

MAU:

Myzopoda aurita

MGO:

Myotis goudoti

MGR:

Miniopterus griveaudi

MJU:

Mormopterus jugularis

MMY:

Myotis myotis

Rb:

Robertsonian

X-A:

X-autosome translocation

Zoo-FISH:

Zoo-fluorescence in situ hybridization

References

  • Ao L, Gu X, Feng Q et al (2006) Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Cytogenet Genome Res 115:145–153

    Article  CAS  PubMed  Google Scholar 

  • Ao L, Mao X, Nie W et al (2007) Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Res 15:257–267

    CAS  PubMed  Google Scholar 

  • Baker RJ, Jordan RG (1970) Chromosomal studies of some neotropical bats of the families Emballonuridae, Noctilionidae, Natalidae and Vespertilionidae. Caryologia 23:595–604

    Google Scholar 

  • Baker JW, Patton JL (1967) Karyotypes and karyotypic variation of North American vespertilionid bats. J Mammal 48:270–286

    Article  Google Scholar 

  • Baker RJ, Bass RA (1979) Evolutionary relationships of the Brachyphylllinae to the Glossophagine genera Glossophaga and Monophyllus. J Mammal 60:364–372

    Article  Google Scholar 

  • Baker RJ, Bickham JW (1980) Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa. Syst Zool 29:239–253

    Article  Google Scholar 

  • Baker RJ, Qumsiyeh MB (1988) Methods in chiropteran mitotic studies. In: Kunz TH (ed) Ecological and behavioral methods for the study of bats. Smithsonian Press, Washington, DC, pp 425–435

    Google Scholar 

  • Baker RJ, Genoways HH, Seyfarth PA (1981) Results of the Alcoa Foundation-Suriname expeditions. VI. Additional chromosomal data for bats (Mammalia: Chiroptera) from Suriname. Ann Carnegie Mus 50:333–344

    Google Scholar 

  • Bickham JW (1979a) Banded karyotypes of 11 species of American bats (genus Myotis). Cytologia 44:789–797

    CAS  PubMed  Google Scholar 

  • Bickham JW (1979b) Chromosomal variation and evolutionary relationships of vespertilionid bats. J Mammal 60:350–363

    Article  Google Scholar 

  • Bickham JW, Daniel MJ, Haiduk MW (1980) Karyotype of Mystacina tuberculata (Chiroptera: Mystacinidae). J Mammal 61:322–324

    Article  Google Scholar 

  • Bickham JW, McBee K, Schlitter DA (1986) Chromosomal variation among seven species of Myotis (Chiroptera: Vespertilionidae). J Mammal 67:746–750

    Article  Google Scholar 

  • Dobigny G, Ozouf-Costaz C, Bonilla C, Volobouev V (2004) Viability of X-autosome translocations in mammals: an epigenomic hypothesis from a rodent case-study. Chromosoma 113:34–41

    Article  CAS  PubMed  Google Scholar 

  • Eger JL, Mitchell L (1996) Biogeography of the bats of Madagascar. Biogéographie de Madagascar 1996:321–328

    Google Scholar 

  • Eger JL, Mitchell L (2003) Chiroptera, bats. In: Goodman SM, Benstead JP (eds) The Natural History of Madagascar. University of Chicago Press, Chicago, Illinois, pp 1287–1298

    Google Scholar 

  • Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962

    Article  CAS  PubMed  Google Scholar 

  • Gannon WL, Sikes RS, Animal Care and Use Committee of the American Society of Mammalogists (2007) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 88:809–823

    Article  Google Scholar 

  • Gardner JL (1977) Chromosomal variation in Vampyressa and a review of chromosomal evolution in the Phyllostomidae (Chiroptera). Syst Zool 26:300–318

    Article  Google Scholar 

  • Goodman SM, Maminirina CP, Weyeneth N et al (2009a) The use of molecular and morphological characters to resolve the taxonomic identity of cryptic species: the case of Miniopterus manavi (Chiroptera: Miniopteridae). Zool Scr 38:339–363

    Article  Google Scholar 

  • Goodman SM, Maminirina CP, Bradman HM et al (2009b) The use of molecular phylogenetic and morphological tools to indentify cryptic and paraphyletic species: examples from the diminutive long-fingered bats (Chiroptera: Miniopteridae: Miniopterus) on Madagascar. Am Mus Novit 3669:1–34

    Article  Google Scholar 

  • Hood CS, Baker RJ (1986) G- and C-band chromosome studies of bats of the family Emballonuridae. J Mammal 67:705–711

    Article  Google Scholar 

  • Hood CS, Schlitter DA, Georgudaki JI, Yenbutra S, Baker RJ (1988) Chromosomal studies of bats (Mammalia: Chiroptera) from Thailand. Ann Carnegie Mus 57:99–109

    Google Scholar 

  • Hoofer SR, Reeder SA, Hansen EW, Van Den Bussche RA (2003) Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). J Mammal 84:809–821

    Article  Google Scholar 

  • Hsu TC, Baker RJ, Utakoji T (1968) The multiple sex chromosome system of American leaf-nosed bats (Chiroptera, Phyllostomidae). Cytogenetics 7:27–38

    Article  CAS  PubMed  Google Scholar 

  • Kerridge DC, Baker RJ (1978) Natalus micropus. Mamm Species 114:1–3

    Article  Google Scholar 

  • Koopman KF (1994) Chiroptera: systematics. In: Niethammer J, Schliemann H, Starck D (eds) Handbook of Zoology, vol 8. Walter de Gruyter Press, Berlin, pp 1–217

    Google Scholar 

  • Lamb JM, Ralph TMC, Goodman SM et al (2008) Phylogeography and predicted distribution of African-Arabian and Malagasy populations of giant mastiff bats, Otomops spp. Acta Chiropt 10:21–40

    Article  Google Scholar 

  • Lyon MF (1968) Chromosomal and subchromosomal inactivation. Annu Rev Genet 2:31–52

    Article  Google Scholar 

  • Mao X, Wang J, Su W et al (2007) Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison. Chromosome Res 15:835–848

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Nie W, Wang J et al (2008) Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving interfamily phylogenetic relationships. Chromosome Res 16:155–170

    Article  CAS  PubMed  Google Scholar 

  • Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • O’Brien J, Mariani C, Olson L et al (2009) Multiple colonisations of the western Indian Ocean by Pteropus fruit bats (Megachiroptera: Pteropodidae): the furthest islands were colonised first. Mol Phylogenet Evol 51:294–303

    Article  PubMed  Google Scholar 

  • Parish DA, Vise P, Wichman HA, Bull JJ, Baker RJ (2002) Distribution of LINES and other repetitive elements in the karyotype of the bat Carollia: implications for X-chromosome inactivation. Cytogenet Genome Res 96:191–197

    Article  CAS  PubMed  Google Scholar 

  • Patton JC, Baker RJ (1978) Chromosomal homology and evolution of Phyllostomoid bats. Syst Zool 27:449–462

    Article  Google Scholar 

  • Peterson RL, Eger JL, Mitchell L (1995) Chiroptêres. Vol 84. Fauna de Madagascar. Museum National d’Histoire Naturelle, Paris, pp 1–204

    Google Scholar 

  • Pieczarka JC, Nagamachi CY, O’Brien PCM et al (2005) Reciprocal chromosome painting between two South American bats: Carollia brevicuda and Phyllostomus hastatus (Phyllostomidae, Chiroptera). Chromosome Res 13:339–347

    Article  CAS  PubMed  Google Scholar 

  • Ratrimomanarivo FH, Vivian J, Goodman SM (2007) Morphological and molecular assessment of the specific status of Mops midas (Chiroptera: Molossidae) from Madagascar and Africa. Afr Zool 42:237–253

    Article  Google Scholar 

  • Ratrimomanarivo FH, Goodman SM, Hoosen N, Taylor PJ, Lamb J (2008) Morphological and molecular variation in Mops leucostigma (Chiroptera: Molossidae) of Madagascar and the Comoros: phylogeny, phylogeography, and geographic variation. Mitt Hamb Zool Mus Inst 105:57–101

    Google Scholar 

  • Russell AL, Goodman SM, Cox MP (2008) Coalescent analyses support multiple mainland-to-island dispersals in the evolution of Malagasy Triaenops bats (Chiroptera: Hipposideridae). J Biogeogr 35:995–1003

    Article  Google Scholar 

  • Seabright M (1971) A rapid staining technique for human chromosomes. Lancet 2:971–972

    Article  CAS  PubMed  Google Scholar 

  • Sharp AJ, Spotswood HT, Robinson DO, Turner BM, Jacobs PA (2002) Molecular and cytogenetic analysis of the spreading of X-inactivation in X;autosome translocations. Hum Mol Genet 11:3145–3156

    Article  CAS  PubMed  Google Scholar 

  • Simmons NB (1998) A reappraisal of interfamilial relationships of bats. In: Kunz TH, Racey PA (eds) Bat Biology and Conservation. Smithsonian Institution Press, Washington DC, pp 3–26

    Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: a Taxonomic and Geographic Reference, vol 1, 3rd edn. Johns Hopkins University Press, Baltimore, MD, pp 312–529

    Google Scholar 

  • Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archanycteris, Hassianycteris and Palaeochiroptera to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1–182

    Google Scholar 

  • Smith JD (1976) Chiropteran evolution. In: Baker RJ, Jones JK, Carter DC (eds) Biology of the bats of the new world family Phyllostomidae, vol. I. [Special Publications, Museum of Texas Tech University 10: 1–218], pp 46–69

  • Sreepada KS, Koubínová D, Konečny A et al (2008) Karyotypes of three species of molossid bats (Molossidae, Chiroptera) from India and western Africa. Folia Zool 57:347–357

    Google Scholar 

  • Stadelmann B, Jacobs DS, Schoeman MC, Ruedi M (2004) Phylogeny of Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropt 6:177–192

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  PubMed  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy MJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584

    Article  CAS  PubMed  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A et al (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Gene Chromosome Canc 4:257–263

    Article  CAS  Google Scholar 

  • Tucker PK, Bickham JW (1989) Heterochromatin and sex-chromosome variation in bats of the genus Carollia (Chiroptera: Phyllostomidae). J Mammal 70:174–179

    Article  Google Scholar 

  • Van Den Bussche RA, Hoofer SR (2001) Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. J Mammal 82:320–327

    Article  Google Scholar 

  • Van Den Bussche RA, Reeder SA, Hansen EW, Hoofer SR (2003) Utility of the dentin matrix protein 1 (DMP1) gene for resolving mammalian intraordinal phylogenetic relationships. Mol Phylogenet Evol 26:89–101

    Article  Google Scholar 

  • Volleth M, Yong HS (1987) Glischropus tylophus, the first known old-world bat with an X-autosome translocation. Cell Mol Life Sci 43:922–924

    Article  Google Scholar 

  • Volleth M, Heller KG (2007) Chromosome number reduction accompanied by extensive heterochromatin addition in the bat Glauconycteris beatrix (Mammalia; Chiroptera, Vespertilionidae). Cytogenet Genome Res 119:245–247

    Article  CAS  PubMed  Google Scholar 

  • Volleth M, Klett C, Kollak A et al (1999) ZOO-FISH analysis in a species of the order Chiroptera: Glossophaga soricina (Phyllostomidae). Chromosome Res 7:57–64

    Article  CAS  PubMed  Google Scholar 

  • Volleth M, Heller KG, Pfeiffer R, Hameister H (2002) A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Res 10:477–497

    Article  CAS  PubMed  Google Scholar 

  • Weyeneth N, Goodman SM, Stanley WT, Ruedi M (2008) The biogeography of Miniopterus bats Chiroptera: Miniopteridae) from the Comoro Archipelago inferred from mitochondrial DNA. Mol Ecol 17:5205–5219

    Article  PubMed  Google Scholar 

  • Wienberg J, Stanyon R (1997) Comparative painting of mammalian chromosomes. Curr Opin Genet Dev 7:784–791

    Article  CAS  PubMed  Google Scholar 

  • Yong HS, Dhaliwal SS (1976) Chromosomes of the fruit-bat subfamily Macroglossinae from peninsular Malaysia. Cytologia 41:85–89

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants awarded by the John D. and Catherine T. MacArthur Foundation (to SMG), Volkswagen Foundation (to SMG, PJT and JML), South African National Research Foundation (to RVR, LRR), and the South African Biosystematics Initiative (to JML). FY is supported by the Wellcome Trust. We thank F. Ratrimomanarivo, C. Maminirina, and B. Ramasindrazana for their assistance with fieldwork and specimen collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leigh R. Richards or Ramugondo V. Rambau.

Additional information

Responsible Editor: Yoichi Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, L.R., Rambau, R.V., Lamb, J.M. et al. Cross-species chromosome painting in bats from Madagascar: the contribution of Myzopodidae to revealing ancestral syntenies in Chiroptera. Chromosome Res 18, 635–653 (2010). https://doi.org/10.1007/s10577-010-9139-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-010-9139-6

Keywords