Skip to main content

Advertisement

Log in

Microarray-based cytogenetic profiling reveals recurrent and subtype-associated genomic copy number aberrations in feline sarcomas

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Injection-site-associated sarcomas (ISAS), commonly arising at the site of routine vaccine administration, afflict as many as 22,000 domestic cats annually in the USA. These tumors are typically more aggressive and prone to recurrence than spontaneous sarcomas (non-ISAS), generally receiving a poorer long-term prognosis and warranting a more aggressive therapeutic approach. Although certain clinical and histological factors are highly suggestive of ISAS, timely diagnosis and optimal clinical management may be hindered by the absence of definitive markers that can distinguish between tumors with underlying injection-related etiology and their spontaneous counterpart. Specific nonrandom chromosome copy number aberrations (CNAs) have been associated with the clinical behavior of a vast spectrum of human tumors, providing an extensive resource of potential diagnostic and prognostic biomarkers. Although similar principles are now being applied with great success in other species, their relevance to feline molecular oncology has not yet been investigated in any detail. We report the construction of a genomic microarray platform for detection of recurrent CNAs in feline tumors through cytogenetic assignment of 210 large-insert DNA clones selected at intervals of ∼15 Mb from the feline genome sequence assembly. Microarray-based profiling of 19 ISAS and 27 non-ISAS cases identified an extensive range of genomic imbalances that were highly recurrent throughout the combined panel of 46 sarcomas. Deletions of two specific regions were significantly associated with the non-ISAS phenotype. Further characterization of these regions may ultimately permit molecular distinction between ISAS and non-ISAS, as a tool for predicting tumor behavior and prognosis, as well as refining means for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

BAC:

Bacterial artificial chromosome

BLAST:

Basic Local Alignment Search Tool

BLAT:

BLAST-like alignment tool

CNA:

Copy number aberration

DSH/DMH/DLH:

Domestic short/medium/long hair

FBS:

Fetal bovine serum

FCA:

Felis catus

FeLV:

Feline leukemia virus

FFPE:

Formalin-fixed paraffin-embedded

FISH:

Fluorescence in situ hybridization

H&E:

Hematoxylin and eosin

ISAS:

Injection-site-associated sarcoma

Mb:

Megabase

NCBI:

National Center for Biotechnology Information

RPCI:

Roswell Park Cancer Institute

UCSC:

University of California Santa Cruz

References

  • AVMA (2007) US pet ownership and demographics sourcebook. American Veterinary Medical Association, Schaumburg

    Google Scholar 

  • Beck TW, Menninger J, Voigt G et al (2001) Comparative feline genomics: a BAC/PAC contig map of the major histocompatibility complex class II region. Genomics 71:282–295

    Article  CAS  PubMed  Google Scholar 

  • Breen M, Modiano JF (2008) Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans—man and his best friend share more than companionship. Chromosome Res 16:145–154

    Article  CAS  PubMed  Google Scholar 

  • Breen M, Hitte C, Lorentzen TD et al (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5:65–75

    Article  PubMed  Google Scholar 

  • Cho KW, Okuda M, Endo Y et al (1997a) Assignment of the cat p53 tumor suppressor gene (TP53) to cat chromosome E1p14→p13 by fluorescence in situ hybridization. Cytogenet Cell Genet 79:145–146

    Article  CAS  PubMed  Google Scholar 

  • Cho KW, Satoh H, Youn HY et al (1997b) Assignment of the feline c-myc gene (MYC) to cat chromosome F2q21.2 by fluorescence in situ hybridization. Cytogenet Cell Genet 78:135–136

    Article  CAS  PubMed  Google Scholar 

  • Cho KW, Satoh H, Youn HY et al (1997c) Assignment of the cat immunoglobulin heavy chain genes IGHM and IGHG to chromosome B3q26 and T cell receptor chain gene TCRG to A2q12→q13 by fluorescence in situ hybridization. Cytogenet Cell Genet 79:118–120

    Article  CAS  PubMed  Google Scholar 

  • Courtay-Cahen C, Platt SR, De Risio L, Starkey MP (2008) Preliminary analysis of genomic abnormalities in canine meningiomas. Vet Comp Oncol 6:182–192

    Article  CAS  PubMed  Google Scholar 

  • Couto SS, Griffey SM, Duarte PC, Madewell BR (2002) Feline vaccine-associated fibrosarcoma: morphologic distinctions. Vet Pathol 39:33–41

    Article  CAS  PubMed  Google Scholar 

  • Davis BW, Raudsepp T, Pearks Wilkerson AJ et al (2009) A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae. Genomics 93:299–304

    Article  CAS  PubMed  Google Scholar 

  • Devitt JJ, Maranon DG, Ehrhart EJ et al (2009) Correlations between numerical chromosomal aberrations in the tumor and peripheral blood in canine lymphoma. Cytogenet Genome Res 124:12–18

    Article  CAS  PubMed  Google Scholar 

  • Doddy FD, Glickman LT, Glickman NW, Janovitz EB (1996) Feline fibrosarcomas at vaccination sites and non-vaccination sites. J Comp Pathol 114:165–174

    Article  CAS  PubMed  Google Scholar 

  • Fujino Y, Mizuno T, Masuda K et al (2001a) Assignment of the feline Fas (TNFRSF6) gene to chromosome D2p13→p12.2 by fluorescence in situ hybridization. Cytogenet Cell Genet 95:122–124

    Article  CAS  PubMed  Google Scholar 

  • Fujino Y, Mizuno T, Masuda K et al (2001b) Assignment of the feline Fas ligand gene (TNFSF6) to chromosome F1q12→q13 by fluorescence in situ hybridization. Cytogenet Cell Genet 94:92–93

    Article  CAS  PubMed  Google Scholar 

  • Goh K, Smith RA, Proper JS (1981) Chromosomal aberrations in leukemic cats. Cornell Vet 71:43–46

    CAS  PubMed  Google Scholar 

  • Grindem CB, Buoen LC (1989) Cytogenetic analysis in nine leukaemic cats. J Comp Pathol 101:21–30

    Article  CAS  PubMed  Google Scholar 

  • Hendrick MJ, Goldschmidt MH (1991) Do injection site reactions induce fibrosarcomas in cats? J Am Vet Med Assoc 199:968

    CAS  PubMed  Google Scholar 

  • Hendrick MJ, Kass PH, McGill LD, Tizard IR (1994) Postvaccinal sarcomas in cats. J Natl Cancer Inst 86:341–343

    Article  CAS  PubMed  Google Scholar 

  • Hershey AE, Sorenmo KU, Hendrick MJ, Shofer FS, Vail DM (2000) Prognosis for presumed feline vaccine-associated sarcoma after excision: 61 cases (1986–1996). J Am Vet Med Assoc 216:58–61

    Article  CAS  PubMed  Google Scholar 

  • Hoots E, McNeil E, LaRue S (2001) Characterization of genetic alterations in feline vaccine-associated sarcoma using whole chromosome paint probes (abstr). In American College of Veterinary Internal Medicine, pp. 83

  • Kalat M, Mayr B, Schleger W, Wagner B, Reifinger M (1991) Chromosomal hyperdiploidy in a feline sarcoma. Res Vet Sci 51:227–228

    CAS  PubMed  Google Scholar 

  • Kass PH (2004) Methodological issues in the design and analysis of epidemiological studies of feline vaccine-associated sarcomas. Anim Health Res Rev 5:291–293

    Article  PubMed  Google Scholar 

  • Kass PH, Spangler WL, Hendrick MJ et al (2003) Multicenter case control study of risk factors associated with development of vaccine-associated sarcomas in cats. J Am Vet Med Assoc 223:1283–1292

    Article  PubMed  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    CAS  PubMed  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    CAS  PubMed  Google Scholar 

  • Kirpensteijn J (2006) Feline injection site-associated sarcoma: Is it a reason to critically evaluate our vaccination policies? Vet Microbiol 117:59–65

    Article  PubMed  Google Scholar 

  • Macy DW (2004) Feline vaccine-associated sarcomas: progress? Anim Health Res Rev 5:287–289

    Article  PubMed  Google Scholar 

  • Mayr B, Hofstadler E, Schleger W, Reifinger M, Eisenmenger E (1994) Trisomy D1, marker F1: new cytogenetic findings in two cases of feline fibrosarcoma. Zentralbl Veterinarmed A 41:197–201

    CAS  PubMed  Google Scholar 

  • Mayr B, Ortner W, Reifinger M, Loupal G (1995) Loss of chromosome B2-material in three cases of feline mammary tumours. Res Vet Sci 59:61–63

    Article  CAS  PubMed  Google Scholar 

  • Mayr B, Bockstahler B, Loupal G, Reifinger M, Schleger W (1996) Cytogenetic variation between four cases of feline fibrosarcoma. Res Vet Sci 61:268–270

    Article  CAS  PubMed  Google Scholar 

  • Mayr B, Wegscheider H, Reifinger M, Jugl T (1998) Cytogenetic alterations in four feline soft-tissue tumours. Vet Res Commun 22:21–29

    Article  CAS  PubMed  Google Scholar 

  • Mayr B, Jugl M, Brem G, Reifinger M, Loupal G (1999) Cytogenetic variation in six cases of feline mammary tumours. Zentralbl Veterinarmed A 46:367–377

    CAS  PubMed  Google Scholar 

  • McNeil E, Hoots E, LaRue S (2001) Characterization of chromosomal aberrations in feline vaccine-associated sarcoma using comparative genomic hybridization (abstr). In American College of Veterinary Internal Medicine, pp. 84

  • Menotti-Raymond M, David VA, Schaffer AA et al (2008) An autosomal genetic linkage map of the domestic cat, Felis silvestris catus. Genomics 93:305–313

    Article  PubMed  Google Scholar 

  • Minke JM, Cornelisse CJ, Stolwijk JA et al (1990) Flow cytometric DNA ploidy analysis of feline mammary tumors. Cancer Res 50:4003–4007

    CAS  PubMed  Google Scholar 

  • Mitelman F, Johansson B, Mertens FE (2008) Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman

  • Moizhess TG (2008) Carcinogenesis induced by foreign bodies. Biochemistry (Mosc) 73:763–775

    Article  CAS  Google Scholar 

  • Morrison WB, Starr RM (2001) Vaccine-associated feline sarcomas. J Am Vet Med Assoc 218:697–702

    Article  CAS  PubMed  Google Scholar 

  • Munday JS, Stedman NL, Richey LJ (2003) Histology and immunohistochemistry of seven ferret vaccination-site fibrosarcomas. Vet Pathol 40:288–293

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ (2006) The feline genome. Genome Dyn 2:60–68

    Article  CAS  PubMed  Google Scholar 

  • Pfister S, Remke M, Benner A et al (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27:1627–1636

    Article  PubMed  Google Scholar 

  • Pontius JU, Mullikin JC, Smith DR et al (2007) Initial sequence and comparative analysis of the cat genome. Genome Res 17:1675–1689

    Article  CAS  PubMed  Google Scholar 

  • Rettenberger G, Klett C, Zechner U et al (1995) ZOO-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res 3:479–486

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera A, Robinson TJ (2008) Evolutionary plasticity and cancer breakpoints in human chromosome 3. Bioessays 30:1126–1137

    Article  CAS  PubMed  Google Scholar 

  • Sargan DR, Milne BS, Hernandez JA et al (2005) Chromosome rearrangements in canine fibrosarcomas. J Heredity 96:766–773

    Article  CAS  Google Scholar 

  • Schottenfeld D, Beebe-Dimmer JL, Vigneau FD (2009) The epidemiology and pathogenesis of neoplasia in the small intestine. Ann Epidemiol 19:58–69

    Article  PubMed  Google Scholar 

  • Shepherd AJ (2008) Results of the 2007 AVMA survey of US pet-owning households regarding use of veterinary services and expenditures. J Am Vet Med Assoc 233:727–728

    Article  PubMed  Google Scholar 

  • Swanton C, Caldas C (2009) Molecular classification of solid tumours: towards pathway-driven therapeutics. Br J Cancer 100:1517–1522

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Smith KC, Ostrander EA, Galibert F, Breen M (2003) Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 89:1530–1537

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Scott A, Langford CF et al (2005) Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors. Genome Res 15:1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Duke SE, Bloom SK et al (2007) A cytogenetically characterized, genome-anchored 10-Mb BAC set and CGH array for the domestic dog. J Heredity 98:474–484

    Article  CAS  Google Scholar 

  • Thomas R, Duke SE, Karlsson EK et al (2008) A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis. Cytogenet Genome Res 122:110–121

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Duke SE, Wang HJ et al (2009a) ‘Putting our heads together’: insights into genomic conservation between human and canine intracranial tumors. J Neurooncol 94:333–349

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Wang HJ, Tsai PC et al (2009b) Influence of genetic background on tumor karyotypes: evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res 17:365–377

    Article  CAS  PubMed  Google Scholar 

  • VAFSTF:The Vaccine-Associated Feline Sarcoma Task Force (2005) The current understanding and management of vaccine-associated sarcomas in cats. J Am Vet Med Assoc 226:1821–1842

    Article  Google Scholar 

  • Vascellari M, Melchiotti E, Bozza MA, Mutinelli F (2003) Fibrosarcomas at presumed sites of injection in dogs: characteristics and comparison with non-vaccination site fibrosarcomas and feline post-vaccinal fibrosarcomas. J Vet Med A Physiol Pathol Clin Med 50:286–291

    CAS  PubMed  Google Scholar 

  • Waly NE, Gruffydd-Jones TJ, Stokes CR, Day MJ (2005) Immunohistochemical diagnosis of alimentary lymphomas and severe intestinal inflammation in cats. J Comp Pathol 133:253–260

    Article  CAS  PubMed  Google Scholar 

  • Wienberg J, Stanyon R, Nash WG et al (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77:211–217

    Article  CAS  PubMed  Google Scholar 

  • Winkler S, Reimann-Berg N, Murua Escobar H et al (2006) Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 169:154–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Katie Saylor and Emily Smith for technical assistance and Dr. Steven Suter for his clinical advice and expertise. We are grateful to Drs. Steve O’Brien, Sagarika Kanjilal, Naoya Yuhki, and Vivek Kapur for assistance with retrieval of feline DNA sequences, and we gratefully acknowledge Dr. Peter de Jong for provision of feline BAC clones. We thank Sandra Horton and the NCSU Histology Service for their invaluable assistance with retrieving clinical samples and data and thank the owners and veterinarians who contributed feline clinical samples. This study was supported by funding from the Morris Animal Foundation (D06FE-308 awarded to RT) and was sponsored by the Blue Buffalo Foundation for Cancer Research and Carolyn S. Norgren. KLT is a European Science Foundation EURYI award recipient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael Thomas.

Additional information

Responsible Editor: Dean A. Jackson

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

Signalment and aCGH data for all sarcoma cases analyzed (n = 46). The breed, age, and gender of each case are shown at the top of the chart, along with the anatomical location of the tumor. ISAS cases are listed to the left, and non-ISAS cases to the right. The first two columns indicate the chromosome and megabase location of arrayed BAC clones, which are listed in genomic order. Colored cells indicate the copy number status at each locus in each tumor case, based on the tumor DNA/reference DNA fluorescence intensity (red cells indicates genomic loss, test/reference ≤ 0.85:1; green cells indicates genomic gain, test/reference ≥ 1.15:1; yellow cells indicates genomic balance). M male, F female, DSH domestic short hair, DMH domestic medium hair, DLH domestic long hair (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Valli, V.E., Ellis, P. et al. Microarray-based cytogenetic profiling reveals recurrent and subtype-associated genomic copy number aberrations in feline sarcomas. Chromosome Res 17, 987–1000 (2009). https://doi.org/10.1007/s10577-009-9096-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9096-0

Keywords