Skip to main content
Log in

Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)—An atypical species with low diploid number

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The chicken is the most extensively studied species in birds and thus constitutes an ideal reference for comparative genomics in birds. Comparative cytogenetic studies indicate that the chicken has retained many chromosome characters of the ancestral avian karyotype. The homology between chicken macrochromosomes (1–9 and Z) and their counterparts in more than 40 avian species of 10 different orders has been established by chromosome painting. However, the avian homologues of chicken microchromosomes remain to be defined. Moreover, no reciprocal chromosome painting in birds has been performed due to the lack of chromosome-specific probes from other avian species. Here we have generated a set of chromosome-specific paints using flow cytometry that cover the whole genome of the stone curlew (Burhinus oedicnemus, Charadriiformes), a species with one of the lowest diploid number so far reported in birds, as well as paints from more microchromosomes of the chicken. A genome-wide comparative map between the chicken and the stone curlew has been constructed for the first time based on reciprocal chromosome painting. The results indicate that extensive chromosome fusions underlie the sharp decrease in the diploid number in the stone curlew. To a lesser extent, chromosome fissions and inversions occurred also during the evolution of the stone curlew. It is anticipated that this complete set of chromosome painting probes from the first Neoaves species will become an invaluable tool for avian comparative cytogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BOE:

Burhinus oedicnemus

DAPI:

4′,6-diamidino-2-phenylindole

DOP-PCR:

degenerate oligonucleotide-primed PCR

GGA:

Gallus gallus

PI:

propidium iodide

References

  • Auer H, Mayr B, Lambrou M, Schleger W (1987) An extended chicken karyotype, including the NOR chromosome. Cytogenet Cell Genet 45:218–221

    Article  PubMed  CAS  Google Scholar 

  • Bed’Home B, Coullin P, Guillier-Gencik S, Moulin S, Bernheim A, Volobouev V (2003) Characterization of the atypical karyotype of the black-winged kite Elanus caeruleus (Falconiformes: Accipitridae) by means of classical and molecular cytogenetic techniques. Chromosome Res 11:335–343

    Article  Google Scholar 

  • Brown JW, Rest JS, García-Moreno J, Sorenson MD, Mindell DP (2008) Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology 6:6. doi:10.1186/1741-7007-6-6

    PubMed  Google Scholar 

  • Bulatova N, Panov E, Radjabli S (1971) Description of karyotypes of some birds from the USSR fauna. Proc USSR Acad Sci 199:1420–1423

    Google Scholar 

  • Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96:72–112

    Article  Google Scholar 

  • Burt DW, Bruley C, Dunn IC et al (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402:411–413

    Article  PubMed  CAS  Google Scholar 

  • Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX males using bivariate flow karyotype analysis and flow sorted dot blots. Cytometry 11:202–207

    Article  PubMed  CAS  Google Scholar 

  • Christidis L (1990) Aves. In: John B, Kayano H, Levan A (eds) Animal cytogenetics, vol. 4, Chordata 3. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Clarke JA, Tambussi CP, Noriega JI, Ericson GM, Ketcham RA (2005) Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433:305–308

    Article  PubMed  CAS  Google Scholar 

  • Cooper A, Penny D (1997) Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 275:1109–1113

    Article  PubMed  CAS  Google Scholar 

  • Cracraft J (2001) Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event. Proc R Soc B 268:459–469

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira EHC, Habermann FA, Lacerda O, Sbalqueiro IJ, Wienberg J, Müller S (2005) Chromosome reshuffling in birds of prey: the karyotype of the world’s largest eagle (Harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus). Chromosoma 114:338–343

    Article  PubMed  Google Scholar 

  • Derjusheva S, Kurganova A, Habermann F, Gaginskaya E (2004) High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chromosome Res 12:715–723

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Bryan Jennings W, Shedlock AM (2005) Phylogenetics of modern birds in the era of genomics. Proc R Soc B 272:979–992

    Article  PubMed  CAS  Google Scholar 

  • Ericson PGP, Anderson CL, Britton T et al (2006) Diversification of Neoaves: Integration of molecular sequence data and fossils. Biol Letters 2:543–547

    Article  Google Scholar 

  • Fain MG, Houde P (2004) Parallel radiations in the primary clades of birds. Evolution 58:2558–2573

    PubMed  Google Scholar 

  • Feduccia A (2003) “Big bang” for tertiary birds? Trends Ecol Evol 18:172–176

    Article  Google Scholar 

  • Fridolfsson A, Cheng H, Copeland NG et al (1998) Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc Natl Acad Sci USA 95:8147–8152

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK, Haberman F, Masabanda J et al (1999) Micro- and macrochromosome paints generated by flow cytometry and microdissection: tools for mapping the chicken genome. Cytogenet Cell Genet 87:278–281

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK, Robertson LBW, Tempest HG, Skinner BM (2007) The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet Genome Res 117:64–77

    Article  PubMed  CAS  Google Scholar 

  • Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003) Comparative chromosome painting of chicken autosomal paints 1–9 in nine different bird species. Cytogenet Genome Res 103:173–184

    Article  PubMed  CAS  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Arnold AP (2005) Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res 13:47–56

    Article  PubMed  CAS  Google Scholar 

  • Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA (2003) Chromosome homologybetween chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102:326–330

    Article  PubMed  CAS  Google Scholar 

  • Ladjali-Mohammedi K, Bitgood JJ, Tixier-Boichard M, Ponce De Leon FA (1999) International system for standardized avian karyotypes (ISSAK): standardized banded karyotypes of the domestic fowl (Gallus gallus domesticus). Cytogenet Cell Genet 86:271–276

    Article  PubMed  CAS  Google Scholar 

  • Livezey BC, Zusi RL (2001) Higher-order phylogenetics of modern Aves based on comparative anatomy. Netherlands J Zool 51:179–205

    Article  Google Scholar 

  • Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc 149:1–95

    Article  PubMed  Google Scholar 

  • Masabanda JS, Burt DW, O’Brien PCM et al (2004) Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Mayr G, Clarke J (2003) The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19:527–553

    Article  Google Scholar 

  • McQueen HA, Fantes J, Cross SH, Clark VH, Archibald AL, Bird AP (1996) CpG islands of chicken are concentrated on microchromosomes. Nature Genet 12:321–324

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Karl E, Volobouev V, Griffin DK, Schartl M, Schmid M (2006) Extensive gross genomic rearrangements between chicken and Old World vultures (Falconiformes: Accipitridae). Cytogenet Genome Res 112:286–295

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Karl E, Griffin DK, Schartl M, Schmid M (2007) Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 117:43–53

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Schlegelmilch K, Haaf T, Schartl M, Schmid M (2008) Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenet Genome Res 122:150–156

    Article  PubMed  CAS  Google Scholar 

  • Newcomer EH (1955) Accessory chromosomes in the domestic fowl. Genetics 40:587–588

    Google Scholar 

  • Ng BL, Carter NP (2006) Factors affecting flow karyotype resolution. Cytometry Part A 69A:1028–1036

    Article  Google Scholar 

  • Nishida-Umehara C, Tsuda Y, Ishijima J, Ando J, Fujiwara A, Matsuda Y, Griffin DK (2007) The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res 15:721–734

    Article  PubMed  CAS  Google Scholar 

  • Nishida C, Ishijima J, Kosaka A et al (2008) Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Res 16:171–181

    Article  PubMed  CAS  Google Scholar 

  • Raudsepp T, Houck ML, O’Brien PC, Ferguson-Smith MA, Ryder OA, Chowdhary BP (2002) Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus)macrochromosomes. Cytogenet Genome Res 98:54–60

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Nanda I, Guttenbach M et al (2000) First report on chicken genes and chromosomes 2000. Cytogenet Cell Genet 90:169–218

    Article  PubMed  CAS  Google Scholar 

  • Shetty S, Griffin DK, Graves JAM (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7:289–295

    Article  PubMed  CAS  Google Scholar 

  • Shibusawa M, Nishida-Umehara C, Masabanda J, Griffin DK, Isobe T, Matsuda Y (2002) Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cytogenet Genome Res 98:225–230

    Article  PubMed  CAS  Google Scholar 

  • Shibusawa M, Nishida-Umehara C, Tsudzuki M, Masabanda J, Griffin DK, Matsuda Y (2004a) A comparative karyological study of the blue-breasted quail (Coturnix chinensis, Phasianidae) and California quail (Callipepla californica,Odontophoridae). Cytogenet Genome Res 106:82–90

    Article  PubMed  CAS  Google Scholar 

  • Shibusawa M, Nishibori M, Nishida-Umehara C et al (2004b) Karyotypic evolution in the Galliformes: An examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Cytogenet Genome Res 106:111–119

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Burt DW (1998) Parameters of the chicken genome. Anim Genet 29:290–294

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Bruley CK, Paton IR, Dunn I, Jones CT, Windsor D, Morrice DR, Law AS, Masabanda J, Sazanov A, Waddington D, Fries R, Burt DW (2000) Differences in gene density on chicken macrochromosomes and microchromosomes. Anim Genet 31:96–103

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Gaginskaya ER, Macgregor HC (1994) The arrangement and transcription of telomere DNA sequences at the ends of lampbrush chromosomes of birds. Chromosome Res 2:460–470

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjold M, Pfragner R, Ponder BA (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:2576–2263

    Article  Google Scholar 

  • van Tuinen M, Hedges SB (2001) Calibration of avian molecular clocks. Mol Biol Evol 18:206–213

    PubMed  Google Scholar 

  • van Tuinen M, Sibley CG, Hedges SB (2000) The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Mol Biol Evol 17:451–457

    PubMed  Google Scholar 

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39:396–401

    Article  PubMed  CAS  Google Scholar 

  • Yang FT, Fu BY, O’Brien PCM, Nie WH, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: Insight into the occasional fertility of mules. Chromosome Res 12:65–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Norin Chai (Paris Museum of Natural History) for providing the tissue biopsy of a female Burhinus oedicnemus and Dr. Indrajit Nanda for a critical reading of the manuscript. The study was supported partly by a Royal Society International Short Visit award to MAFS and WN, and a grant from the National Natural Science Foundation of China. The Cambridge Resource Centre for Comparative Genomics was funded by the Wellcome Trust. N.P.C., B.L.N. and F.Y. are supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengtang Yang.

Additional information

Responsible Editor: Herbert Macgregor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, W., O’Brien, P.C.M., Ng, B.L. et al. Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)—An atypical species with low diploid number. Chromosome Res 17, 99–113 (2009). https://doi.org/10.1007/s10577-009-9021-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9021-6

Keywords

Navigation