Skip to main content

Advertisement

Log in

Separation and maintenance of normal cells from human embryonic stem cells with trisomy 12 mosaicism

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Human embryonic stem cells (hESCs) are pluripotent and hold great promise as useful tools in basic scientific research and in the field of regenerative medicine. However, several studies have recently reported chromosomal abnormalities such as gains of chromosomes 12, 17 and X in hESCs. This genetic instability presents an obstacle in the application of hESCs as sources of cell therapies. We found that trisomy 12 was correlated with changes in hESC colony morphology during hESC maintenance. In this study, we investigated whether normal and trisomy 12 cells could be separated in hESC cultures displaying trisomy 12 mosaicism with two types of colony morphology using a mechanical transfer technique. Eight sublines were cultured from eight hESC colonies displaying normal or abnormal morphology. Four sublines with normal morphology had normal chromosome 12 numbers, whereas the four sublines with abnormal morphology displayed trisomy 12. These results indicate that a hESC colony with a minor degree of chromosomal mosaicism and normal morphology could proceed to a colony with normal chromosomes after prolonged cultures with mechanical transfer. Therefore, analysis of cultures for chromosomal abnormalities when changes in colony morphology are observed during culture is essential for maintaining normal hESC lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AP:

alkaline phosphatase

EC:

embryonic carcinoma

FISH:

fluorescence in-situ hybridization

hESC:

human embryonic stem cell

IVF:

in-vitro fertilization

SCID:

severe combined immunodeficiency

SNUhES4:

Seoul National University human Embryonic Stem cell line 4

SSEA-4:

stage specific embryonic antigen-4

TGCT:

testicular germ cell tumour

Tra-1-60:

tumour rejection antigen-1-60

References

  • Andrew PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper, JS (2005) Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 33: 1526–1530.

    Article  Google Scholar 

  • Baker DE, Harrison N, Maltby E et al. (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25: 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Buzzard JJ, Gough NM, Crook JM, Colman A (2004) Karyotype of human ES cells during extended culture. Nat Biotechnol 22: 381–382.

    Article  PubMed  CAS  Google Scholar 

  • Caisander G, Park H, Frej K et al. (2006) Chromosomal integrity maintained in five human embryonic stem cell lines after prolonged in vitro culture. Chromosome Research 14: 1131–1137.

    Article  Google Scholar 

  • Cowan CA, Klimanskaya I, McMahon J et al. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350: 1353–1356.

    Article  PubMed  CAS  Google Scholar 

  • Draper JS, Smith K, Gokhale P et al. (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22: 53–54.

    Article  PubMed  CAS  Google Scholar 

  • Enver T, Soneji S, Joshi C et al. (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14: 3129–3140.

    Article  PubMed  CAS  Google Scholar 

  • Gertow K, Cedervall J, Unger C et al. (2007) Trisomy 12 in HESC leads to no selective in vivo growth advantage in teratomas, but induces an increased abundance of renal development. J Cell Biochem 100: 1518–1525.

    Article  PubMed  CAS  Google Scholar 

  • Grandela G, Wolvetang E (2007) hESC adaptation, selection and stability. Stem Cell Rev 3: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Herszfeld D, Wolvetang E, Langton-Bunker E et al. (2006) CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol 24: 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman LM, Carpenter MK (2005) Characterization and culture of human embryonic stem cells. Nat Biotechnol 23: 699–708.

    Article  PubMed  CAS  Google Scholar 

  • Imreh MP, Gertow K, Cedervall J et al. (2006) In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem 99: 508–516.

    Article  PubMed  CAS  Google Scholar 

  • Iwarsson E, Lundqvist M, Inzunza J et al. (1999) A high degree of aneuploidy in frozen-thawed human preimplantation embryos. Hum Genet 104: 376–382.

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Oh SK, Park YB et al. (2005) Methods for derivation of human embryonic stem cells. Stem Cells 23: 1228–1233.

    Article  PubMed  Google Scholar 

  • Lerou PH, Daley GQ (2005) Therapeutic potential of embryonic stem cells. Blood Rev 19: 321–331.

    Article  PubMed  Google Scholar 

  • Li SS, Liu YH, Tseng CN, Chung TL, Lee TY, Singh S (2006) Characterization and gene expression profiling of five new human embryonic stem cell lines derived in Taiwan. Stem Cells Dev 15: 532–555.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig TE, Levenstein ME, Jones JM et al. (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24: 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Mitalipova MM, Rao RR, Hoyer DM et al. (2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23: 19–20.

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Kim HS, Ahn HJ et al. (2005a) Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23: 211–219.

    Article  PubMed  Google Scholar 

  • Oh SK, Kim HS, Park YB et al. (2005b) Methods for expansion of human embryonic stem cells. Stem Cells 23: 605–609.

    Article  PubMed  CAS  Google Scholar 

  • Peura TT, Bosman A, Stojanov T (2007) Derivation of human embryonic stem cell lines. Theriogenology 67: 32–42.

    Article  PubMed  Google Scholar 

  • Plaia TW, Josephson R, Liu Y et al. (2006) Characterization of a new NIH-registered variant human embryonic stem cell line, BG01V: a tool for human embryonic stem cell research. Stem Cells 24: 531–546.

    Article  PubMed  CAS  Google Scholar 

  • Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24: 344–350.

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff BE, Pera MF, Fong C et al. (2000) Embryonic stem cell lines from human blastocysts; somatic differentiation in vitro. Nat Biotechnol 18: 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Rosler ES, Fisk GJ, Ares X et al. (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn 229: 259–274.

    Article  PubMed  CAS  Google Scholar 

  • Stojkovic P, Lako M, Stewart R (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23: 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Summersgill BM, Jafer O, Wang R et al. (2001) Definition of chromosome aberrations in testicular germ cell tumor cell lines by 24-color karyotyping and complementary molecular cytogenetic analyses. Cancer Genet Cytogenet 128: 120–129.

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Etskovitz-Eldor J, Shapiro SS et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Zafarana G, Grygalewicz B, Gillis AJ et al. (2003) 12p-amplicon structure analysis in testicular germ cell tumors of adolescents and adults by array CGH. Oncogene 22: 7695–7701.

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Chen J, Liu Y (2004) BG01V: A variant human embryonic stem cell line which exhibits rapid growth after passaging and reliable dopaminergic differentiation. Restor Neurol Neurosci 22: 421–428.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (SC1150) from the Stem Cell Research Center of the 21st Century Frontier Research Program funded by the Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seol, H.W., Oh, S.K., Park, Y.B. et al. Separation and maintenance of normal cells from human embryonic stem cells with trisomy 12 mosaicism. Chromosome Res 16, 1075–1084 (2008). https://doi.org/10.1007/s10577-008-1258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1258-y

Keywords

Navigation