Transposable elements as drivers of genomic and biological diversity in vertebrates

Abstract

Comparative genomics has revealed that major vertebrate lineages contain quantitatively and qualitatively different populations of retrotransposable elements and DNA transposons, with important differences also frequently observed between species of the same lineage. This is essentially due to (i) the differential evolution of ancestral families of transposable elements, with evolutionary scenarios ranging from complete extinction to massive invasion; (ii) the lineage-specific introduction of transposable elements by infection and horizontal transfer, as exemplified by endogenous retroviruses; and (iii) the lineage-specific emergence of new transposable elements, as particularly observed for non-coding retroelements called short interspersed elements (SINEs). During vertebrate evolution, transposable elements have repeatedly contributed regulatory and coding sequences to the host, leading to the emergence of new lineage-specific gene regulations and functions. In all vertebrate lineages, there is evidence of transposable element-mediated genomic rearrangements such as insertions, deletions, inversions and duplications potentially associated with or subsequent to speciation events. Taken together, these observations indicate that transposable elements are major drivers of genomic and biological diversity in vertebrates, with possible important roles in speciation and major evolutionary transitions.

This is a preview of subscription content, access via your institution.

References

  1. Abrusan G, Krambeck HJ (2006) Competition may determine the diversity of transposable elements. Theor Popul Biol 70: 364–375.

    PubMed  Article  Google Scholar 

  2. Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.

    PubMed  CAS  Article  Google Scholar 

  3. Antony JM, van Marle G, Opii W et al. (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7: 1088–1095.

    PubMed  CAS  Article  Google Scholar 

  4. Aparicio S, Chapman J, Stupka E et al. (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297: 1301–1310.

    PubMed  CAS  Article  Google Scholar 

  5. Ayala FJ, Coluzzi M (2005) Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA 102 (Supplement 1): 6535–6542.

    PubMed  CAS  Article  Google Scholar 

  6. Bejerano G, Lowe CB, Ahituv N et al. (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441: 87–90.

    PubMed  CAS  Article  Google Scholar 

  7. Belshaw R, Katzourakis A, Paces J, Burt A, Tristem M (2005) High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol 22: 814–817.

    PubMed  CAS  Article  Google Scholar 

  8. Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382: 826–829.

    PubMed  CAS  Article  Google Scholar 

  9. Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443: 521–524.

    PubMed  Article  CAS  Google Scholar 

  10. Blaise S, de Parseval N, Benit L, Heidmann T (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA 100: 13013–13018.

    PubMed  CAS  Article  Google Scholar 

  11. Boissinot S, Furano AV (2001) Adaptive evolution in LINE-1 retrotransposons. Mol Biol Evol 18: 2186–2194.

    PubMed  CAS  Google Scholar 

  12. Bouneau L, Fischer C, Ozouf-Costaz C et al. (2003) An active non-LTR retrotransposon with tandem structure in the compact genome of the pufferfish Tetraodon nigroviridis. Genome Res 13: 1686–1695.

    PubMed  CAS  Article  Google Scholar 

  13. Brandt J, Schrauth S, Veith AM et al. (2005) Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposon-derived neogenes in mammals. Gene 345: 101–111.

    PubMed  CAS  Article  Google Scholar 

  14. Bucheton A (1990) I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet 6: 16–21.

    PubMed  CAS  Article  Google Scholar 

  15. Campillos M, Doerks T, Shah PK, Bork P (2006) Computational characterization of multiple Gag-like human proteins. Trends Genet 22: 585–589.

    PubMed  CAS  Article  Google Scholar 

  16. Casavant NC, Scott L, Cantrell MA, Wiggins LE, Baker RJ, Wichman HA (2000) The end of the LINE?: lack of recent L1 activity in a group of South American rodents. Genetics 154: 1809–1817.

    PubMed  CAS  Google Scholar 

  17. Casola C, Hucks D, Feschotte C (2007) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol (Oct 16); [Epub ahead of print].

  18. Chen JM, Stenson PD, Cooper DN, Ferec C (2005) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117: 411–427.

    PubMed  CAS  Article  Google Scholar 

  19. Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87.

    Article  CAS  Google Scholar 

  20. Cordaux R, Udit S, Batzer MA, Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103: 8101–8106.

    PubMed  CAS  Article  Google Scholar 

  21. Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4: 865–877.

    CAS  Article  Google Scholar 

  22. Dasilva C, Hadji H, Ozouf-Costaz C et al. (2002) Remarkable compartmentalization of transposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridis genome. Proc Natl Acad Sci USA 99: 13636–13641.

    PubMed  CAS  Article  Google Scholar 

  23. Dehal P, Satou Y, Campbell RK et al. (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298: 2157–2167.

    PubMed  CAS  Article  Google Scholar 

  24. Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13: 651–658.

    PubMed  CAS  Article  Google Scholar 

  25. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35: 41–48.

    PubMed  CAS  Article  Google Scholar 

  26. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    PubMed  CAS  Article  Google Scholar 

  27. Dunlap KA, Palmarini M, Varela M et al. (2006). Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci USA 103: 14390–14395.

    PubMed  CAS  Article  Google Scholar 

  28. Dupressoir A, Marceau G, Vernochet C et al. (2005) Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA 102: 725–730.

    PubMed  CAS  Article  Google Scholar 

  29. Eickbush TH, Malik HS (2002) Origins and evolution of retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM, eds., Mobile DNA II, ASM Press, Washington, pp. 1111–1144.

    Google Scholar 

  30. Evgen’ev MB, Arkhipova IR (2005) Penelope-like elements – a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res 110: 510–521.

    PubMed  CAS  Article  Google Scholar 

  31. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41: 331–368.

    PubMed  CAS  Article  Google Scholar 

  32. Fontdevila A (2005) Hybrid genome evolution by transposition. Cytogenet Genome Res 110: 49–55.

    PubMed  CAS  Article  Google Scholar 

  33. Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20: 9–14.

    PubMed  CAS  Article  Google Scholar 

  34. Gentles AJ, Wakefield MJ, Kohany O et al. (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17: 992–1004.

    PubMed  CAS  Article  Google Scholar 

  35. Gibbs RA, Weinstock GM, Metzker ML et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521.

    PubMed  CAS  Article  Google Scholar 

  36. Goodier JL, Ostertag EM, Du K, Kazazian HH Jr (2001) A novel active L1 retrotransposon subfamily in the mouse. Genome Res 11: 1677–1685.

    PubMed  CAS  Article  Google Scholar 

  37. Han JS, Boeke JD (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27: 775–784.

    PubMed  CAS  Article  Google Scholar 

  38. Han K, Lee J, Meyer TJ et al. (2007) Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet 3: e184.

    Article  CAS  Google Scholar 

  39. Horie K, Saito ES, Keng VW, Ikeda R, Ishihara H, Takeda J (2007) Retrotransposons influence the mouse transcriptome: implication for the divergence of genetic traits. Genetics 176: 815–827.

    PubMed  CAS  Article  Google Scholar 

  40. Ichiyanagi K, Nishihara H, Duvernell DD, Okada N (2007) Acquisition of endonuclease specificity during evolution of L1 retrotransposon. Mol Biol Evol 24: 2009–2015.

    PubMed  CAS  Article  Google Scholar 

  41. International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716.

    Article  CAS  Google Scholar 

  42. Jaillon O, Aury JM, Brunet F et al. (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431: 946–957.

    PubMed  Article  Google Scholar 

  43. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3: e181.

    PubMed  Article  CAS  Google Scholar 

  44. Kapitonov VV, Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci USA 103: 4540–4545.

    PubMed  CAS  Article  Google Scholar 

  45. Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23: 521–529.

    PubMed  CAS  Article  Google Scholar 

  46. Kasahara M, Naruse K, Sasaki S et al. (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447: 714–719.

    PubMed  CAS  Article  Google Scholar 

  47. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303: 1626–1632.

    PubMed  CAS  Article  Google Scholar 

  48. Kehrer-Sawatzki H, Cooper DN (2007) Structural divergence between the human and chimpanzee genomes. Hum Genet 120: 759–778.

    PubMed  CAS  Article  Google Scholar 

  49. Kordis D, Gubensek F (1998) Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc Natl Acad Sci USA 95: 10704–10709.

    PubMed  CAS  Article  Google Scholar 

  50. Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J (2007) Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res 17: 1139–1145.

    PubMed  CAS  Article  Google Scholar 

  51. Krylov DM, Koonin EV (2001) A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control. Curr Biol 11: R584–R587.

    PubMed  CAS  Article  Google Scholar 

  52. Kuryshev VY, Skryabin BV, Kremerskothen J, Jurka J, Brosius J (2001) Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage. J Mol Biol 309: 1049–1066.

    PubMed  CAS  Article  Google Scholar 

  53. Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    PubMed  CAS  Article  Google Scholar 

  54. Lindblad-Toh K, Wade CM, Mikkelsen TS et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819.

    PubMed  CAS  Article  Google Scholar 

  55. Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci USA 104: 8005–8010.

    PubMed  CAS  Article  Google Scholar 

  56. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.

    PubMed  CAS  Article  Google Scholar 

  57. Lyon MF (2000) LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Natl Acad Sci USA 97: 6248–6249.

    PubMed  CAS  Article  Google Scholar 

  58. Mallet F, Bouton O, Prudhomme S et al. (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101: 1731–1736.

    PubMed  CAS  Article  Google Scholar 

  59. Masly JP, Jones CD, Noor MA, Locke J, Orr HA (2006) Gene transposition as a cause of hybrid sterility in Drosophila. Science 313: 1448–1450.

    PubMed  CAS  Article  Google Scholar 

  60. Mi S, Lee X, Li XP et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789.

    PubMed  CAS  Article  Google Scholar 

  61. Mikkelsen TS, Wakefield MJ, Aken B et al. (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447: 167–177.

    PubMed  CAS  Article  Google Scholar 

  62. Mills RE, Bennett EA, Iskow RC et al. (2006) Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 78: 671–679.

    PubMed  CAS  Article  Google Scholar 

  63. Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23: 183–191.

    PubMed  CAS  Article  Google Scholar 

  64. Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

    Article  CAS  Google Scholar 

  65. Nakamura TM, Cech TR (1998) Reversing time: origin of telomerase. Cell 92: 587–590.

    PubMed  CAS  Article  Google Scholar 

  66. Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence - accelerated evolution in rearranged chromosomes. Science 300: 321–324.

    PubMed  CAS  Article  Google Scholar 

  67. Neafsey DE, Blumenstiel JP, Hartl DL (2004) Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitflies. Mol Biol Evol 21: 2310–2318.

    PubMed  CAS  Article  Google Scholar 

  68. Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17: 619–621.

    PubMed  CAS  Article  Google Scholar 

  69. Nishihara H, Smit AF, Okada N (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 16: 864–874.

    PubMed  CAS  Article  Google Scholar 

  70. Noor MA, Chang AS (2006) Evolutionary genetics: jumping into a new species. Curr Biol 16: R890–R892.

    PubMed  CAS  Article  Google Scholar 

  71. O’Neill RJ, O’Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68–72.

    PubMed  CAS  Article  Google Scholar 

  72. Ono R, Nakamura K, Inoue K et al. (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38: 101–106.

    PubMed  CAS  Article  Google Scholar 

  73. Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    PubMed  CAS  Article  Google Scholar 

  74. Pace JK II, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17: 422–432.

    PubMed  CAS  Article  Google Scholar 

  75. Peaston AE, Evsikov AV, Graber JH et al. (2004). Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7: 597–606.

    PubMed  CAS  Article  Google Scholar 

  76. Pickeral OK, Makalowski W, Boguski MS, Boeke JD (2000) Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res 10: 411–415.

    PubMed  CAS  Article  Google Scholar 

  77. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176: 1323–1337.

    PubMed  CAS  Article  Google Scholar 

  78. Piskurek O, Okada N (2007) Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci USA 104: 12046–12051.

    PubMed  CAS  Article  Google Scholar 

  79. Poulter RT, Goodwin TJ (2005) DIRS-1 and the other tyrosine recombinase retrotransposons. Cytogenet Genome Res 110: 575–588.

    PubMed  CAS  Article  Google Scholar 

  80. Pritham EJ, Feschotte C (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 104: 1895–1900.

    PubMed  CAS  Article  Google Scholar 

  81. Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390: 3–17.

    PubMed  CAS  Article  Google Scholar 

  82. Pyatkov KI, Arkhipova IR, Malkova NV, Finnegan DJ, Evgen’ev MB (2004) Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc Natl Acad Sci USA 101: 14719–14724.

    PubMed  CAS  Article  Google Scholar 

  83. Ray DA, Xing J, Salem AH, Batzer MA (2006) SINEs of a nearly perfect character. Syst Biol 55: 928–935.

    PubMed  Article  Google Scholar 

  84. Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316: 222–234.

    Article  CAS  Google Scholar 

  85. Ribet D, Dewannieux M, Heidmann T (2004) An active murine transposon family pair: retrotransposition of “master” MusD copies and ETn trans-mobilization. Genome Res 14: 2261–2267.

    PubMed  CAS  Article  Google Scholar 

  86. Santangelo AM, de Souza FS, Franchini LF, Bumaschny VF, LowMJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3: e166.

    Article  CAS  Google Scholar 

  87. Schuller M, Jenne D, Voltz R (2005) The human PNMA family: novel neuronal proteins implicated in paraneoplastic neurological disease. J Neuroimmunol 169: 172–176.

    PubMed  Article  CAS  Google Scholar 

  88. Seleme MC, Vetter MR, Cordaux R, Bastone L, Batzer MA, Kazazian HH Jr. (2006) Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc Natl Acad Sci USA 103: 6611–6616.

    PubMed  CAS  Article  Google Scholar 

  89. Sen SK, Han K, Wang J et al. (2006) Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 79: 41–53.

    PubMed  CAS  Article  Google Scholar 

  90. Shen CH, Steiner LA (2004) Genome structure and thymic expression of an endogenous retrovirus in zebrafish. J Virol 78: 899–911.

    PubMed  CAS  Article  Google Scholar 

  91. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–285.

    PubMed  CAS  Article  Google Scholar 

  92. Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442: 79–81.

    PubMed  CAS  Article  Google Scholar 

  93. Thornburg BG, Gotea V, Makalowski W (2006) Transposable elements as a significant source of transcription regulating signals. Gene 365: 104–110.

    PubMed  CAS  Article  Google Scholar 

  94. Toth M, Grimsby J, Buzsaki G, Donovan GP (1995) Epileptic seizures caused by inactivation of a novel gene, jerky, related to centromere binding protein-B in transgenic mice. Nat Genet 11: 71–75.

    PubMed  CAS  Article  Google Scholar 

  95. van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19: 530–536.

    PubMed  Article  CAS  Google Scholar 

  96. Venkatesh B, Kirkness EF, Loh YH et al. (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5: e101.

    PubMed  Article  CAS  Google Scholar 

  97. Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103: 3220–3225.

    PubMed  CAS  Article  Google Scholar 

  98. Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28: 913–922.

    PubMed  CAS  Article  Google Scholar 

  99. Volff JN, Brosius J (2007) Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. Genome Dyn 3: 175–190.

    Article  PubMed  CAS  Google Scholar 

  100. Volff JN, Korting C, Schartl M (2000) Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol 17: 1673–1684.

    PubMed  CAS  Google Scholar 

  101. Volff JN, Hornung U, Schartl M (2001a) Fish retroposons related to the Penelope element of Drosophila virilis define a new group of retrotransposable elements. Mol Genet Genomics 265: 711–720.

    CAS  Article  Google Scholar 

  102. Volff JN, Korting C, Froschauer A, Sweeney K, Schartl M (2001b) Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52: 351–360.

    CAS  Google Scholar 

  103. Volff JN, Korting C, Meyer A, Schartl M (2001c) Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol 18: 427–431.

    CAS  Google Scholar 

  104. Volff JN, Bouneau L, Ozouf-Costaz C, Fischer C (2003) Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19: 674–678.

    PubMed  CAS  Article  Google Scholar 

  105. Wang H, Xing J, Grover D et al. (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354: 994–1007.

    PubMed  CAS  Article  Google Scholar 

  106. Wicker T, Robertson JS, Schulze SR et al. (2005) The repetitive landscape of the chicken genome. Genome Res 15: 126–136.

    PubMed  Article  Google Scholar 

  107. Xing J, Wang H, Belancio VP, Cordaux R, Deininger PL, Batzer MA (2006) Emergence of primate genes by retrotransposon-mediated sequence transduction. Proc Natl Acad Sci USA 103: 17608–17613.

    PubMed  CAS  Article  Google Scholar 

  108. Zdobnov EM, Campillos M, Harrington ED, Torrents D, Bork P (2005) Protein coding potential of retroviruses and other transposable elements in vertebrate genomes. Nucleic Acids Res 33: 946–954

    PubMed  CAS  Article  Google Scholar 

  109. Zhou Q, Froschauer A, Schultheis C et al. (2006) Helitron transposons on the sex chromosomes of the platyfish Xiphophorus maculatus and their evolution in animal genomes. Zebrafish 3: 39–52.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Nicolas Volff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Böhne, A., Brunet, F., Galiana-Arnoux, D. et al. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16, 203–215 (2008). https://doi.org/10.1007/s10577-007-1202-6

Download citation

Key words

  • biodiversity
  • evolution
  • genome
  • transposable element
  • vertebrate