Skip to main content
Log in

Maize NDC80 is a constitutive feature of the central kinetochore

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In yeast and animals, Nuclear Division Cycle 80 (NDC80) is an important kinetochore protein that binds to microtubules and mediates chromosome movement. Its localization pattern is unusual, since it is generally not viewed as either an inner (centromeric chromatin) or outer (regulatory) component of the kinetochore. Here we report the characterization of NDC80 in a higher plant. By taking advantage of the large meiotic kinetochores of maize, we were able to show that NDC80 localizes outside of the constitutive kinetochore protein CENP-C. Further, a detailed analysis of mitosis indicates that NDC80 is stably present on kinetochores throughout the cell cycle. The quantity of NDC80 positively correlates with measured quantities of DNA and CENP-C, suggesting that NDC80 rapidly associates with DNA following replication and is stably maintained at centromeres during cell division. The data suggest that in plants NDC80 is on par with ‘foundation’ kinetochore proteins such as CENH3 and CENP-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amor DJ, Kalitsis P, Sumer H, Choo KH (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14: 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Asai DJ, Brokaw CJ, Thompson WC, Wilson L (1982) Two different monoclonal antibodies to tubulin inhibit the bending of reactivated sea urchin spermatozoa. Cell Motil 2: 599–614.

    Article  PubMed  CAS  Google Scholar 

  • Asakawa H, Hayashi A, Haraguchi T, Hiraoka Y (2005) Dissociation of the Nuf2-Ndc80 complex releases centromeres from the spindle-pole body during meiotic prophase in fission yeast. Mol Biol Cell 16: 2325–2338.

    Article  PubMed  CAS  Google Scholar 

  • Bharadwaj R, Qi W, Yu H (2004) Identification of two novel components of the human NDC80 kinetochore complex. J Biol Chem 279: 13076–13085.

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127: 983–997.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Riley DJ, Chen PL, Lee WH (1997) HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol Cell Biol 17: 6049–6056.

    PubMed  CAS  Google Scholar 

  • Dawe RK, Sedat JW, Agard DA, Cande WZ (1994) Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell 76: 901–912.

    Article  PubMed  CAS  Google Scholar 

  • Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11: 1227–1238.

    Article  PubMed  CAS  Google Scholar 

  • DeLuca JG, Dong Y, Hergert P et al. (2005) Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 16: 519–531.

    Article  PubMed  CAS  Google Scholar 

  • DeLuca JG, Gall WE, Ciferri C, Cimini D, Musacchio A, Salmon ED (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127: 969–982.

    Article  PubMed  CAS  Google Scholar 

  • Desai A, Rybina S, Muller-Reichert T et al. (2003) KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev 17: 2421–2435.

    Article  PubMed  CAS  Google Scholar 

  • De Wulf P, McAinsh AD, Sorger PK (2003) Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 17: 2902–2921.

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T (2004) Assembly of kinetochores in vertebrate cells. Exp Cell Res 296: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Granger C, Cyr R (2001) Use of abnormal preprophase bands to decipher division plane determination. J Cell Sci 114: 599–607.

    PubMed  CAS  Google Scholar 

  • He X, Rines DR, Espelin CW, Sorger PK (2001) Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106: 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Hiatt EN, Kentner EK, Dawe RK (2002) Independently regulated neocentromere activity of two classes of tandem repeat arrays. Plant Cell 14: 407–420.

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Haraguchi T, Hiraoka Y, Kimura H, Fukagawa T (2003) Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J Cell Sci 116: 3347–3362.

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6: 554–560.

    Article  PubMed  CAS  Google Scholar 

  • Janke C, Ortiz J, Lechner J et al. (2001) The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J 20: 777–791.

    Article  PubMed  CAS  Google Scholar 

  • Kline-Smith SL, Sandall S, Desai A (2005) Kinetochore–spindle microtubule interactions during mitosis. Curr Opin Cell Biol 17: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Dey N, Kim CS et al. (2004) Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome Res 14: 1932–1937.

    Article  PubMed  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18: 2443–2451.

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Desai A, Cleveland DW (2005) Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J Cell Biol 170: 873–880.

    Article  PubMed  CAS  Google Scholar 

  • McAinsh AD, Tytell JD, Sorger PK (2003) Structure, function, and regulation of budding yeast kinetochores. Annu Rev Cell Dev Biol 19: 519–539.

    Article  PubMed  CAS  Google Scholar 

  • McCleland ML, Gardner RD, Kallio MJ et al. (2003) The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev 17: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Meraldi P, McAinsh AD, Rheinbay E, Sorger PK (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7: R23.

    Article  PubMed  CAS  Google Scholar 

  • Mikami Y, Hori T, Kimura H, Fukagawa T (2005) The functional region of CENP-H interacts with the Nuf2 complex that localizes to centromere during mitosis. Mol Cell Biol 25: 1958–1970.

    Article  PubMed  CAS  Google Scholar 

  • Pidoux AL, Allshire RC (2004) Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12: 521–534.

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Shibata F, Murata M (2005) Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosome Res 13: 827–834.

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053–1066.

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Bryson TD, Henikoff S (2004) Adaptive evolution of centromere proteins in plants and animals. J Biol 3: 18.

    Article  PubMed  Google Scholar 

  • Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14: 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Westermann S, Cheeseman IM, Anderson S, Yates JR III, Drubin DG, Barnes G (2003) Architecture of the budding yeast kinetochore reveals a conserved molecular core. J Cell Biol 163: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152: 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Yu HG, Muszynski MG, Dawe RK. (1999) The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J Cell Biol 145: 425–435.

    Article  PubMed  CAS  Google Scholar 

  • Yu HG, Hiatt EN, Dawe RK (2000) The plant kinetochore. Trends Plant Sci 5: 543–547.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li X, Marshall JB, Zhong CX, Dawe RK (2005) Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. Plant Cell 17: 572–583.

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Chen Y, Lee WH (1999) Hec1p, an evolutionarily conserved coiled-coil protein, modulates chromosome segregation through interaction with SMC proteins. Mol Cell Biol 19: 5417–5428.

    PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C et al. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825–2836.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kelly Dawe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Y., Dawe, R.K. Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Res 15, 767–775 (2007). https://doi.org/10.1007/s10577-007-1160-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1160-z

Key words

Navigation