Skip to main content

Molecular mechanisms underlying the mitosis–meiosis decision

Abstract

Most eukaryotic cells possess genetic potential to perform meiosis, but the vast majority of them never initiate it. The entry to meiosis is strictly regulated by developmental and environmental conditions, which vary significantly from species to species. Molecular mechanisms underlying the mitosis–meiosis decision are unclear in most organisms, except for a few model systems including fission yeast Schizosaccharomyces pombe. Nutrient limitation is a cue to the entry into meiosis in this microbe. Signals from nutrients converge on the activity of Mei2 protein, which plays pivotal roles in both induction and progression of meiosis. Here we outline the current knowledge of how a set of environmental stimuli eventually activates Mei2, and discuss how Mei2 governs the meiotic program molecularly, especially focusing on a recent finding that Mei2 antagonizes selective elimination of meiotic messenger RNAs.

References

  • Alvarez B, Moreno S (2006) Fission yeast Tor2 promotes cell growth and represses cell differentiation. J Cell Sci 119: 4475–4485.

    PubMed  CAS  Google Scholar 

  • Aono T, Yanai H, Miki F, Davey J, Shimoda C (1994) Mating pheromone-induced expression of the mat1-Pm gene of Schizosaccharomyces pombe: identification of signalling components and characterization of upstream controlling elements. Yeast 10: 757–770.

    PubMed  CAS  Google Scholar 

  • Averbeck N, Sunder S, Sample N, Wise JA, Leatherwood J (2005) Negative control contributes to an extensive program of meiotic splicing in fission yeast. Mol Cell 18: 491–498.

    PubMed  CAS  Google Scholar 

  • Baum B, Wuarin J, Nurse P (1997) Control of S-phase periodic transcription in the fission yeast mitotic cycle. EMBO J 16: 4676–4688.

    PubMed  CAS  Google Scholar 

  • Beach D, Rodgers L, Gould J (1985) ran1 + controls the transition from mitotic division to meiosis in fission yeast. Curr Genet 10: 297–311.

    PubMed  CAS  Google Scholar 

  • Blanco MA, Sanchez-Diaz A, de Prada JM, Moreno S (2000) APCste9/srw1 promotes degradation of mitotic cyclins in G1 and is inhibited by cdc2 phosphorylation. EMBO J 19: 3945–3955.

    PubMed  CAS  Google Scholar 

  • Borgne A, Murakami H, Ayte J, Nurse P (2002) The G1/S cyclin Cig2p during meiosis in fission yeast. Mol Biol Cell 13: 2080–2090.

    PubMed  CAS  Google Scholar 

  • Bueno A, Russell P (1993) Two fission yeast B-type cyclins, Cig2 and Cdc13, have different functions in mitosis. Mol Cell Biol 13: 2286–2297.

    PubMed  CAS  Google Scholar 

  • Caligiuri M, Beach D (1993) Sct1 functions in partnership with Cdc10 in a transcription complex that activates cell cycle START and inhibits differentiation. Cell 72: 607–619.

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125: 59–69.

    PubMed  CAS  Google Scholar 

  • Connolly T, Beach D (1994) Interaction between the Cig1 and Cig2 B-type cyclins in the fission yeast cell cycle. Mol Cell Biol 14: 768–776.

    PubMed  CAS  Google Scholar 

  • Correa-Bordes J, Nurse P (1995) p25rum1 orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell 83: 1001–1009.

    PubMed  CAS  Google Scholar 

  • Costello G, Rodgers L, Beach D (1986) Fission yeast enters the stationary phase G0 state from either mitotic G1 or G2. Curr Genet 11: 119–125.

    Google Scholar 

  • Cunliffe L, White S, McInerny CJ (2004) DSC1-MCB regulation of meiotic transcription in Schizosaccharomyces pombe. Mol Genet Genomics 271: 60–71.

    PubMed  CAS  Google Scholar 

  • Davey J, Nielsen O (1994) Mutations in cyr1 and pat1 reveal pheromone-induced G1 arrest in the fission yeast Schizosaccharomyces pombe. Curr Genet 26: 105–112.

    PubMed  CAS  Google Scholar 

  • Fernandez-Sarabia MJ, McInerny C, Harris P, Gordon C, Fantes P (1993) The cell cycle genes cdc22 + and suc22 + of the fission yeast Schizosaccharomyces pombe encode the large and small subunits of ribonucleotide reductase. Mol Gen Genet 238: 241–251.

    PubMed  CAS  Google Scholar 

  • Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 15: 850–860.

    PubMed  CAS  Google Scholar 

  • Fox ME, Smith GR (1998) Control of meiotic recombination in Schizosaccharomyces pombe. Prog Nucleic Acid Res Mol Biol 61: 345–378.

    PubMed  CAS  Google Scholar 

  • Gotoh Y, Nishida E, Shimanuki M, Toda T, Imai Y, Yamamoto M (1993) Schizosaccharomyces pombe Spk1 is a tyrosine-phosphorylated protein functionally related to Xenopus mitogen-activated protein kinase. Mol Cell Biol 13: 6427–6434.

    PubMed  CAS  Google Scholar 

  • Harigaya Y, Tanaka H, Yamanaka S, et al. (2006) Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442: 45–50.

    PubMed  CAS  Google Scholar 

  • Higuchi T, Watanabe Y, Yamamoto M (2002) Protein kinase A regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol Cell Biol 22: 1–11.

    PubMed  CAS  Google Scholar 

  • Hofmann JF, Beach D (1994) cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J 13: 425–434.

    PubMed  CAS  Google Scholar 

  • Horie S, Watanabe Y, Tanaka K, et al. (1998) The Schizosaccharomyces pombe mei4 + gene encodes a meiosis-specific transcription factor containing a forkhead DNA-binding domain. Mol Cell Biol 18: 2118–2129.

    PubMed  CAS  Google Scholar 

  • Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7: 529–539.

    PubMed  CAS  Google Scholar 

  • Iino Y, Yamamoto M (1985) Mutants of Shizosaccharomyces pombe which sporulate in the haploid state. Mol Gen Genet 198: 416.

    CAS  Google Scholar 

  • Iino Y, Hiramine Y, Yamamoto M (1995) The role of cdc2 and other genes in meiosis in Schizosaccharomyces pombe. Genetics 140: 1235–1245.

    PubMed  CAS  Google Scholar 

  • Imai Y, Yamamoto M (1994) The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner. Genes Dev 8: 328–338.

    PubMed  CAS  Google Scholar 

  • Izawa D, Goto M, Yamashita A, Yamano H, Yamamoto M (2005) Fission yeast Mes1p ensures the onset of meiosis II by blocking degradation of cyclin Cdc13p. Nature 434: 529–533.

    PubMed  CAS  Google Scholar 

  • Kanoh J, Watanabe Y, Ohsugi M, Iino Y, Yamamoto M (1996) Schizosaccharomyces pombe gad7 + encodes a phosphoprotein with a bZIP domain, which is required for proper G1 arrest and gene expression under nitrogen starvation. Genes Cells 1: 391–408.

    PubMed  CAS  Google Scholar 

  • Kawai M, Nakashima A, Ueno M, et al. (2001) Fission yeast tor1 functions in response to various stresses including nitrogen starvation, high osmolarity, and high temperature. Curr Genet 39: 166–174.

    PubMed  CAS  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375–384.

    PubMed  CAS  Google Scholar 

  • Kelly M, Burke J, Smith M, Klar A, Beach D (1988) Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 7: 1537–1547.

    PubMed  CAS  Google Scholar 

  • Kelly TJ, Martin GS, Forsburg SL, Stephen RJ, Russo A, Nurse P (1993) The fission yeast cdc18 + gene product couples S phase to START and mitosis. Cell 74: 371–382.

    PubMed  CAS  Google Scholar 

  • Kitamura K, Maekawa H, Shimoda C (1998) Fission yeast Ste9, a homolog of Hct1/Cdh1 and Fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase. Mol Biol Cell 9: 1065–1080.

    PubMed  CAS  Google Scholar 

  • Kitamura K, Katayama S, Dhut S, et al. (2001) Phosphorylation of Mei2 and Ste11 by Pat1 kinase inhibits sexual differentiation via ubiquitin proteolysis and 14-3-3 protein in fission yeast. Dev Cell 1: 389–399.

    PubMed  CAS  Google Scholar 

  • Kjaerulff S, Lautrup-Larsen I, Truelsen S, Pedersen M, Nielsen O (2005) Constitutive activation of the fission yeast pheromone-responsive pathway induces ectopic meiosis and reveals ste11 as a mitogen-activated protein kinase target. Mol Cell Biol 25: 2045–2059.

    PubMed  CAS  Google Scholar 

  • Kumada K, Su S, Yanagida M, Toda T (1995) Fission yeast TPR-family protein nuc2 is required for G1-arrest upon nitrogen starvation and is an inhibitor of septum formation. J Cell Sci 108 (Pt 3): 895–905.

    PubMed  CAS  Google Scholar 

  • Kunitomo H, Higuchi T, Iino Y, Yamamoto M (2000) A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11 + gene, which encodes a pivotal transcription factor for sexual development. Mol Biol Cell 11: 3205–3217.

    PubMed  CAS  Google Scholar 

  • Li P, McLeod M (1996) Molecular mimicry in development: identification of ste11 + as a substrate and mei3 + as a pseudosubstrate inhibitor of ran1 + kinase. Cell 87: 869–880.

    PubMed  CAS  Google Scholar 

  • Lowndes NF, McInerny CJ, Johnson AL, Fantes PA, Johnston LH (1992) Control of DNA synthesis genes in fission yeast by the cell-cycle gene cdc10 +. Nature 355: 449–453.

    PubMed  CAS  Google Scholar 

  • Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D (1991) mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64: 1111–1122.

    PubMed  CAS  Google Scholar 

  • MacNeill SA, Nurse P (1997) Cell cycle control in fission yeast. In: Pringle J, Broach J, Jones E, eds. The Molecular and Cellular Biology of the Yeast Saccahromyces. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Maeda T, Mochizuki N, Yamamoto M (1990) Adenylyl cyclase is dispensable for vegetative cell growth in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 87: 7814–7818.

    PubMed  CAS  Google Scholar 

  • Malapeira J, Moldon A, Hidalgo E, Smith GR, Nurse P, Ayte J (2005) A meiosis-specific cyclin regulated by splicing is required for proper progression through meiosis. Mol Cell Biol 25: 6330–6337.

    PubMed  CAS  Google Scholar 

  • Mata J, Bahler J (2006) Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc Natl Acad Sci USA 103: 15517–15522.

    PubMed  CAS  Google Scholar 

  • Mata J, Lyne R, Burns G, Bahler J (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet 32: 143–147.

    PubMed  CAS  Google Scholar 

  • Matsumoto S, Bandyopadhyay A, Kwiatkowski DJ, Maitra U, Matsumoto T (2002) Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe. Genetics 161: 1053–1063.

    PubMed  CAS  Google Scholar 

  • Matsuo T, Kubo Y, Watanabe Y, Yamamoto M (2003) Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases. EMBO J 22: 3073–3083.

    PubMed  CAS  Google Scholar 

  • Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M (2007) Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 27: 3154–3164.

    PubMed  CAS  Google Scholar 

  • McLeod M, Beach D (1988) A specific inhibitor of the ran1 + protein kinase regulates entry into meiosis in Schizosaccharomyces pombe. Nature 332: 509–514.

    PubMed  CAS  Google Scholar 

  • Millar JB, McGowan CH, Lenaers G, Jones R, Russell P (1991) p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. EMBO J 10: 4301–4309.

    PubMed  CAS  Google Scholar 

  • Miyamoto M, Tanaka K, Okayama H (1994) res2 +, a new member of the cdc10 +/SWI4 family, controls the ‘start’ of mitotic and meiotic cycles in fission yeast. EMBO J 13: 1873–1880.

    PubMed  CAS  Google Scholar 

  • Mochizuki N, Yamamoto M (1992) Reduction in the intracellular cAMP level triggers initiation of sexual development in fission yeast. Mol Gen Genet 233: 17–24.

    PubMed  CAS  Google Scholar 

  • Moser BA, Russell P (2000) Cell cycle regulation in Schizosaccharomyces pombe. Curr Opin Microbiol 3: 631–636.

    PubMed  CAS  Google Scholar 

  • Nakashima N, Tanaka K, Sturm S, Okayama H (1995) Fission yeast Rep2 is a putative transcriptional activator subunit for the cell cycle ‘start’ function of Res2-Cdc10. EMBO J 14: 4794–4802.

    PubMed  CAS  Google Scholar 

  • Neiman AM, Stevenson BJ, Xu HP, et al. (1993) Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol Biol Cell 4: 107–120.

    PubMed  CAS  Google Scholar 

  • Nielsen O (2004) Mating-type control and differentiation. In: Egel R, ed. The Moleular Biology of Schizosaccharomyces pombe. Berlin, Heidelberg: Springer, pp. 281–296.

    Google Scholar 

  • Nielsen O, Davey J, Egel R (1992) The ras1 function of Schizosaccharomyces pombe mediates pheromone-induced transcription. EMBO J 11: 1391–1395.

    PubMed  CAS  Google Scholar 

  • Nurse P (1985) Mutants of the Shizosaccharomyces pombe which alter the shift between cell proliferation and sporulation. Mol Gen Genet 198: 497.

    Google Scholar 

  • Obara T, Nakafuku M, Yamamoto M, Kaziro Y (1991) Isolation and characterization of a gene encoding a G-protein α subunit from Schizosaccharomyces pombe: involvement in mating and sporulation pathways. Proc Natl Acad Sci USA 88: 5877–5881.

    PubMed  CAS  Google Scholar 

  • Obara-Ishihara T, Okayama H (1994) A B-type cyclin negatively regulates conjugation via interacting with cell cycle ‘start’ genes in fission yeast. EMBO J 13: 1863–1872.

    PubMed  CAS  Google Scholar 

  • Petersen J, Weilguny D, Egel R, Nielsen O (1995) Characterization of fus1 of Schizosaccharomyces pombe: a developmentally controlled function needed for conjugation. Mol Cell Biol 15: 3697–3707.

    PubMed  CAS  Google Scholar 

  • Samejima I, Mackie S, Fantes PA (1997) Multiple modes of activation of the stress-responsive MAP kinase pathway in fission yeast. EMBO J 16: 6162–6170.

    PubMed  CAS  Google Scholar 

  • Samejima I, Mackie S, Warbrick E, Weisman R, Fantes PA (1998) The fission yeast mitotic regulator win1 + encodes an MAP kinase kinase kinase that phosphorylates and activates Wis1 MAP kinase kinase in response to high osmolarity. Mol Biol Cell 9: 2325–2335.

    PubMed  CAS  Google Scholar 

  • Sato M, Shinozaki-Yabana S, Yamashita A, Watanabe Y, Yamamoto M (2001) The fission yeast meiotic regulator Mei2p undergoes nucleocytoplasmic shuttling. FEBS Lett 499: 251–255.

    PubMed  CAS  Google Scholar 

  • Sato M, Watanabe Y, Akiyoshi Y, Yamamoto M (2002) 14–3–3 protein interferes with the binding of RNA to the phosphorylated form of fission yeast meiotic regulator Mei2p. Curr Biol 12: 141–145.

    PubMed  CAS  Google Scholar 

  • Shieh JC, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JB (1997) The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev 11: 1008–1022.

    PubMed  CAS  Google Scholar 

  • Shieh JC, Wilkinson MG, Millar JB (1998) The Win1 mitotic regulator is a component of the fission yeast stress-activated Sty1 MAPK pathway. Mol Biol Cell 9: 311–322.

    PubMed  CAS  Google Scholar 

  • Shimada T, Yamashita A, Yamamoto M (2003) The fission yeast meiotic regulator Mei2p forms a dot structure in the horse-tail nucleus in association with the sme2 locus on chromosome II. Mol Biol Cell 14: 2461–2469.

    PubMed  CAS  Google Scholar 

  • Shinozaki-Yabana S, Watanabe Y, Yamamoto M (2000) Novel WD-repeat protein Mip1p facilitates function of the meiotic regulator Mei2p in fission yeast. Mol Cell Biol 20: 1234–1242.

    PubMed  CAS  Google Scholar 

  • Shiozaki K, Russell P (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10: 2276–2288.

    PubMed  CAS  Google Scholar 

  • Shiozaki K, Shiozaki M, Russell P (1997) Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wik1-Wis1-Spc1 kinase cascade. Mol Biol Cell 8: 409–419.

    PubMed  CAS  Google Scholar 

  • Stern B, Nurse P (1997) Fission yeast pheromone blocks S-phase by inhibiting the G1 cyclin B-p34cdc2 kinase. EMBO J 16: 534–544.

    PubMed  CAS  Google Scholar 

  • Stern B, Nurse P (1998) Cyclin B proteolysis and the cyclin-dependent kinase inhibitor rum1p are required for pheromone-induced G1 arrest in fission yeast. Mol Biol Cell 9: 1309–1321.

    PubMed  CAS  Google Scholar 

  • Stoilov P, Rafalska I, Stamm S (2002) YTH: a new domain in nuclear proteins. Trends Biochem Sci 27: 495–497.

    PubMed  CAS  Google Scholar 

  • Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M (1991) Schizosaccharomyces pombe ste11 + encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5: 1990–1999.

    PubMed  CAS  Google Scholar 

  • Sugiyama A, Tanaka K, Okazaki K, Nojima H, Okayama H (1994) A zinc finger protein controls the onset of premeiotic DNA synthesis of fission yeast in a Mei2-independent cascade. EMBO J 13: 1881–1887.

    PubMed  CAS  Google Scholar 

  • Takeda T, Toda T, Kominami K, Kohnosu A, Yanagida M, Jones N (1995) Schizosaccharomyces pombe atf1 + encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J 14: 6193–6208.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Okazaki K, Okazaki N, et al. (1992) A new cdc gene required for S phase entry of Schizosaccharomyces pombe encodes a protein similar to the cdc10 + and SWI4 gene products. EMBO J 11: 4923–4932.

    PubMed  CAS  Google Scholar 

  • Urano J, Comiso MJ, Guo L, et al. (2005) Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 58: 1074–1086.

    PubMed  CAS  Google Scholar 

  • Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, Tamanoi F (2007) Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci USA 104: 3514–3519.

    PubMed  CAS  Google Scholar 

  • Uritani M, Hidaka H, Hotta Y, Ueno M, Ushimaru T, Toda T (2006) Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes Cells 11: 1367–1379.

    PubMed  CAS  Google Scholar 

  • Van Heeckeren WJ, Dorris DR, Struhl K (1998) The mating-type proteins of fission yeast induce meiosis by directly activating mei3 transcription. Mol Cell Biol 18: 7317–7326.

    PubMed  Google Scholar 

  • van Slegtenhorst M, Carr E, Stoyanova R, Kruger WD, Henske EP (2004) Tsc1 + and tsc2 + regulate arginine uptake and metabolism in Schizosaccharomyces pombe. J Biol Chem 279: 12706–12713.

    PubMed  Google Scholar 

  • Warbrick E, Fantes PA (1991) The wis1 protein kinase is a dosage-dependent regulator of mitosis in Schizosaccharomyces pombe. EMBO J 10: 4291–4299.

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400: 461–464.

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Yamamoto M (1994) S. pombe mei2 + encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78: 487–498.

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Yamamoto M (1996) Schizosaccharomyces pombe pcr1 + encodes a CREB/ATF protein involved in regulation of gene expression for sexual development. Mol Cell Biol 16: 704–711.

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Shinozaki-Yabana S, Chikashige Y, Hiraoka Y, Yamamoto M (1997) Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature 386: 187–190.

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Yokobayashi S, Yamamoto M, Nurse P (2001) Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409: 359–363.

    PubMed  CAS  Google Scholar 

  • Weisman R, Choder M (2001) The fission yeast TOR homolog, tor1 +, is required for the response to starvation and other stresses via a conserved serine. J Biol Chem 276: 7027–7032.

    PubMed  CAS  Google Scholar 

  • Weisman R, Roitburg I, Schonburn M, Harari R, Kupiec M (2007) Opposite effects of Tor1 and Tor2 on nitrogen starvation responses in fission yeast. Genetics 175: 1153–1162.

    PubMed  CAS  Google Scholar 

  • White S, Khaliq F, Sotiriou S, McInerny CJ (2001) The role of DSC1 components cdc10 +, rep1 + and rep2 + in MCB gene transcription at the mitotic G1–S boundary in fission yeast. Curr Genet 40: 251–259.

    PubMed  CAS  Google Scholar 

  • Whitehall S, Stacey P, Dawson K, Jones N (1999) Cell cycle-regulated transcription in fission yeast: Cdc10-Res protein interactions during the cell cycle and domains required for regulated transcription. Mol Biol Cell 10: 3705–3715.

    PubMed  CAS  Google Scholar 

  • Wilkinson MG, Samuels M, Takeda T, et al. (1996) The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev 10: 2289–2301.

    PubMed  CAS  Google Scholar 

  • Willer M, Hoffmann L, Styrkarsdottir U, Egel R, Davey J, Nielsen O (1995) Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe. Mol Cell Biol 15: 4964–4970.

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Murakami H, Okayama H (1997) A WD repeat protein controls the cell cycle and differentiation by negatively regulating Cdc2/B-type cyclin complexes. Mol Biol Cell 8: 2475–2486.

    PubMed  CAS  Google Scholar 

  • Yamamoto M (1996) The molecular control mechanisms of meiosis in fission yeast. Trends Biochem Sci 21: 18–22.

    PubMed  CAS  Google Scholar 

  • Yamamoto M (2004) Initiation of Meiosis. In: Egel R, ed. The Molecular Biology of Schizosaccharomyces pombe. Berlin, Heidelberg: Springer, pp 297–310.

    Google Scholar 

  • Yamamoto M, Imai Y, Watanabe Y (1997) Mating and sporulation in Shizosaccharomyces pombe. In: Pringle J, Broach J, Jones E eds. The Molecular and Cellular Biology of the Yeast Saccahromyces. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp 1037–1106.

    Google Scholar 

  • Yamashita A, Watanabe Y, Nukina N, Yamamoto M (1998) RNA-assisted nuclear transport of the meiotic regulator Mei2p in fission yeast. Cell 95: 115–123.

    PubMed  CAS  Google Scholar 

  • Yamashita YM, Nakaseko Y, Samejima I, et al. (1996) 20S cyclosome complex formation and proteolytic activity inhibited by the cAMP/PKA pathway. Nature 384: 276–279.

    PubMed  CAS  Google Scholar 

  • Zhu Y, Takeda T, Nasmyth K, Jones N (1994) pct1 +, which encodes a new DNA-binding partner of p85cdc10, is required for meiosis in the fission yeast Schizosaccharomyces pombe. Genes Dev 8: 885–898.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yamamoto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harigaya, Y., Yamamoto, M. Molecular mechanisms underlying the mitosis–meiosis decision. Chromosome Res 15, 523–537 (2007). https://doi.org/10.1007/s10577-007-1151-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1151-0

Key words

  • cell cycle regulation
  • fission yeast
  • mRNA elimination
  • nutrition
  • pheromone signaling
  • RNA-binding protein