Skip to main content
Log in

Use of cross-species in-situ hybridization (ZOO-FISH) to assess chromosome abnormalities in day-6 in-vivo- or in-vitro-produced sheep embryos

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Causes of chromosomal differences such as mosaicism between embryos developed in vivo and in vitro may be resolved using animal models to compare embryos generated in vivo with those generated by different production systems. The aims of this study were: (1) to test a ZOO-FISH approach (using bovine painting probes) to detect abnormal chromosome make-up in the sheep embryo model, and (2) to examine the extent of chromosome deviation in sheep embryos derived in vivo and in vitro. Cytogenetic analysis was performed on day 6 in-vivo and in-vitro derived sheep embryos using commercially available bovine chromosome painting probes for sex chromosomes X–Y and autosomes 1–29. A total of 8631 interphase and metaphase nuclei were analyzed from 49 in-vitro-derived and 51 in-vivo-derived embryos. The extent of deviation from normal ovine chromosome make-up was higher (p < 0.05) in in-vitro-produced embryos relative to in-vivo-derived embryos (65.3% vs. 19.6% respectively) mainly due to diploid–polyploid mosaicism. Polyploid cells ranged from 3n to 8n with tetraploids most predominant among non-diploid cells. The proportions of polyploid cells per mixoploid embryo in in-vitro-produced embryos ranged from 1.4% to 30.3%, in contrast to less than 10% among the in-vivo-derived embryos. It was concluded that in-vitro-derived embryos are vulnerable to ploidy change compared to their in-vivo counterparts. The application of ZOO-FISH to domestic animal embryos is an effective approach to study the chromosome complement of species for which DNA probes are unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander B, Coppola G, Di Berardino D et al. (2006) The effect of 6-dimethylaminopurine (6-DMAP) and cycloheximide (CHX) on the development and chromosomal complement of sheep parthenogenetic and nuclear transfer embryos. Mol Reprod Dev 73: 20–30.

    Article  PubMed  CAS  Google Scholar 

  • Ansari HA, Bosma AA, Broad TE et al. (1999) Standard C-Q and R-banded ideograms of the domestic sheep (Ovis aries): homology with cattle (Bos taurus). Report of the Committee for the Standardization of the Sheep Karyotype. Cytogenet Cell Genet 85: 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Bean CJ, Hassold TJ, Judis L, Hunt PA (2002) Fertilization in vitro increases non disjunction during early cleavage divisions in a mouse model system. Hum Reprod 17: 2362–2367.

    Article  PubMed  Google Scholar 

  • Bielanska M, Tan SL, Ao A (2002) Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type and relevance to embryo outcome. Hum Reprod 17: 413–419.

    Article  PubMed  Google Scholar 

  • Bielanska M, Jin S, Bernier M, Tan SL, Ao A (2005) Diploid–aneuploid mosaicism in human embryos cultured to the blastocyst stage. Fertil Steril 84: 336–342.

    Article  PubMed  Google Scholar 

  • Bond DJ, Chandley AC (1983) The origins and causes of aneuploidy in experimental organisms. In Aneuploidy. Oxford: Oxford University Press, pp. 27–54.

    Google Scholar 

  • Boue A, Boue J, Gropp A (1985) Cytogenetics of pregnancy wastage. Adv Hum Genet 14: 1–57.

    PubMed  CAS  Google Scholar 

  • Crozet N (1993) Fertilization in vivo and in vitro. In Thibault C, Lavasseur MC, Hunter RHF, eds., Reproduction in Mammals and Man. Paris: Ellipses, pp. 328–347.

    Google Scholar 

  • Delhanty JD, Harper JC, Ao A, Handyside AH, Winston RM (1997) Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet 99: 755–760.

    Article  PubMed  CAS  Google Scholar 

  • Derhaag JG, Coonen E, Bras M et al. (2003) Chromosomally abnormal cells are not selected for the extra-embryonic compartment of the human preimplantation embryo at the blastocyst stage. Hum Reprod 18: 2565–2574.

    Article  PubMed  Google Scholar 

  • Di Berardino D, Vozdova M, Kubickova S et al. (2004) Sexing river buffalo (Bubalus bubalis L.), sheep (Ovis aries L.), goat (Capra hircus L.), and cattle spermatozoa by double color FISH using bovine (Bos taurus L.) X- and Y-painting probes. Mol Reprod Dev 67: 108–115.

    Article  PubMed  CAS  Google Scholar 

  • Evsikov S, Verlinsky Y (1998) Mosaicism in the inner cell mass of human blastocysts. Hum Reprod 11: 3151–3155.

    Article  Google Scholar 

  • Ford JH, Schultz CJ, Correll AT (1988) Chromosome elimination in micronuclei: a common cause of hypoploidy. Am J Hum Genet 43: 733–740.

    PubMed  CAS  Google Scholar 

  • Gallagher DS, Womack JE (1992) Chromosome conservation in the Bovidae. J Hered 83: 287–298.

    PubMed  Google Scholar 

  • Gearhart JD, Davisson MT, Oster-Granite ML (1986) Autosomal aneuploidy in mice: generation and developmental consequences. Brain Res Bull 16: 789–801.

    Article  PubMed  CAS  Google Scholar 

  • Hare WC, Singh EL, Betteridge KJ et al. (1980) Chromosomal analysis of 159 bovine embryos collected 12 to 18 days after estrus. Can J Genet Cytol 22: 615–626.

    PubMed  CAS  Google Scholar 

  • Hayes H, Petit E, Dutrillaux B (1991) Comparison of RGB-banded karyotypes of cattle, sheep and goats. Cytogenet Cell Genet 57: 51–55.

    PubMed  CAS  Google Scholar 

  • Hayes H, Petit E, Bouinol C, Popescu P (1993) Localization of the alpha S2-casein gene (CASAS2) to the homologous cattle, sheep and goat chromosome 4 by in situ hybridization. Cytogenet Cell Genet 64: 281–285.

    PubMed  CAS  Google Scholar 

  • Iannuzzi L, Di Meo GP (1995) Chromosomal evolution in bovids: a comparison of cattle, sheep and goat G- and R-banded chromosomes and cytogenetic divergences among cattle, goat and river buffalo sex chromosomes. Chromosome Res 3: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Iannuzzi L, Di Meo GP, Perucatti A, Schibler L, Cribiu EP (2000) Comparative FISH mapping of bovine X chromosomes reveals homologies and divergences between the subfamilies Bovinae and Caprinae. Cytogenet Cell Genet 89: 171–176.

    Article  PubMed  CAS  Google Scholar 

  • ISCNDB (1989) International System for Chromosome Nomenclature of Domestic Bovids. Cytogenet Cell Genet 53: 65–79.

    Google Scholar 

  • ISCNDB (2000) International System for Chromosome Nomenclature of Domestic Bovids. Cytogenet Cell Genet 92: 283–299.

    Google Scholar 

  • Iwasaki S, Hamano S, Kuwayama M et al. (1992) Developmental changes in the incidence of chromosome anomalies of bovine embryos fertilized in vitro. J Exp Zool 261: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs PA, Hassold TJ, Henry A, Pettay D, Takaesu N (1987) Trisomy 13 ascertained in a survey of spontaneous abortions. J Med Genet 24: 721–7244.

    Article  PubMed  CAS  Google Scholar 

  • James RM, Klerkx AH, Keighren M, Flockhart JH, West JD (1995) Restricted distribution of tetraploid cells in mouse tetraploid⇔diploid chimaeras. Dev Biol 167: 213–226.

    Article  PubMed  CAS  Google Scholar 

  • King WA (1990) Chromosome abnormalities and pregnancy failure in domestic animals. Adv Vet Sci Comp Med 34: 229–250.

    Google Scholar 

  • Lightfoot DA, Kouznetsova A, Mahdy E, Wilbertz J, Hoog C (2006) The fate of mosaic aneuploid embryos during mouse development. Dev Biol 289: 384–394.

    Article  PubMed  CAS  Google Scholar 

  • Long CR, Pinto-Correia C, Duby RT et al. (1993) Chromatin and microtubule morphology during the first cell cycle in bovine zygotes. Mol Reprod Dev 36: 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Long SE, Williams CV (1982) A comparison of the chromosome complement of inner cell mass and trophoblast cells in day-10 pig embryos. J Reprod Fertil 66: 645–648.

    Article  PubMed  CAS  Google Scholar 

  • MacAuley A, Cross JC, Werb Z (1998) Reprogramming the cell cycle for endoreduplication in rodent trophoblast cells. Mol Biol Cell 9: 795–807.

    PubMed  CAS  Google Scholar 

  • McGaughey RW, Polge C (1971) Cytogenetic analysis of pig oocytes matured in vitro. J Exp Zool 76: 383–395.

    Article  Google Scholar 

  • Morris LHA (1998) Effect of male in an in vitro embryo production system. DVSc thesis, University of Guelph, Guelph, Ontario, Canada.

  • Murray JD, Moran C, Boland MP et al. (1986) Polyploid cells in blastocycts and early fetuses from Australian Merino sheep. J Reprod Fertil 78: 439–446.

    Article  PubMed  CAS  Google Scholar 

  • O’Brian JK, Catt SL, Ireland KA, Maxwell WMC, Evans G (1997) In vitro and in vivo developmental capacity of oocytes from prepubertal and adult sheep. Theriogenology 47: 1433–1443.

    Article  Google Scholar 

  • Peura T, Kleemann D, Rudiger S, Nattrass G, McLaughlan C, Walker S (2003) Effect of nutrition of oocyte donor on the outcomes of somatic cell nuclear transfer in the sheep. Biol Reprod 68: 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Plachot M (1989) Chromosome analysis of spontaneous abortions after IVF: a European survey. Hum Reprod 4: 425–429.

    PubMed  CAS  Google Scholar 

  • Ptak G, Loi P, Dattena M, Tischner M, Cappai P (1999) Offspring from one-month old lambs: studies on the developmental capability of prepubertal oocytes. Biol Reprod 61: 1568–1574.

    Article  PubMed  CAS  Google Scholar 

  • Rambags BP, Krijtenburg PJ, Drie HF et al. (2005) Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol Reprod Dev 72: 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Ruangvutilert P, Delhanty JD, Serhal P, Simopoulou M, Rodeck CH, Harper JC (2000) FISH analysis on day 5 post-insemination of human arrested and blastocyst stage embryo. Prenat Diagn 20: 552–560.

    Article  PubMed  CAS  Google Scholar 

  • Rubes J, Vozdova M, Oracova E, Perreault SD (2005) Individual variation in the frequency of sperm aneuploidy in humans. Cytogenet Genome Res 111: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Sandalinas M, Sadowy S, Alikani M, Calderon G, Cohen J, Munne S (2001) Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod 16: 1954–1958.

    Article  PubMed  CAS  Google Scholar 

  • Schatten G, Simerly C, Schatten H (1985) Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci USA 82: 4152–4156.

    Article  PubMed  CAS  Google Scholar 

  • Schatten G, Simerly C, Schatten H (1986) Microtubules in mouse oocytes, zygotes, and embryos during fertilization and early development: unusual configurations and arrest of mammalian fertilization with microtubule inhibitors. Ann N Y Acad Sci 466: 945-948.

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437: 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  • Simerly C, Wu GJ, Zoran S et al. (1995) The paternal inheritance of the centrosome, the cell’s microtubule-organizing center, in humans, and the implications for infertility. Nat Med 1: 47–52.

    Article  PubMed  Google Scholar 

  • Veiga A, Gil Y, Boada M et al. (1999) Confirmation of diagnosis in preimplantation genetic diagnosis (PGD) through blastocyst culture: preliminary experience. Prenat Diagn 19: 1242–1247.

    Article  PubMed  CAS  Google Scholar 

  • Viuff D, Rickords L, Offenberg H et al. (1999) A high proportion of bovine blastocysts produced in vitro are mixoploid. Biol Reprod 60: 1273–12788.

    Article  PubMed  CAS  Google Scholar 

  • Viuff D, Greve T, Avery B , Hyttel P, Brockhoff PB, Thomsen PD (2000) Chromosome aberrations in in-vitro-produced bovine embryos at days 2–5 post-insemination. Biol Reprod 63: 1143–1148.

    Article  PubMed  CAS  Google Scholar 

  • Viuff D, Hendriksen PJ, Vos PL et al. (2001) Chromosomal abnormalities and developmental kinetics in in-vivo-developed cattle embryos at days 2 to 5 after ovulation. Biol Reprod 65: 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Viuff D, Palsgaard A, Rickords L et al. (2002) Bovine embryos contain a higher proportion of polyploid cells in the trophectoderm than in the embryonic disc. Mol Reprod Dev 62: 483–488.

    Article  PubMed  CAS  Google Scholar 

  • Walker S, Hill J, Kleeman D, Nancarrow C (1996) Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations. Biol Reprod 55: 703–708.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox AJ, Weinberg CR, O’Connor JF et al. (1988) Incidence of early loss of pregnancy. N Engl J Med 319: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Zudova D, Rezacova O, Kubickova S, Rubes J (2003) Aneuploidy detection in porcine embryos using fluorescence in situ hybridization. Cytogenet Genome Res 102: 179–183.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Allan King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppola, G., Alexander, B., Di Berardino, D. et al. Use of cross-species in-situ hybridization (ZOO-FISH) to assess chromosome abnormalities in day-6 in-vivo- or in-vitro-produced sheep embryos. Chromosome Res 15, 399–408 (2007). https://doi.org/10.1007/s10577-007-1125-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1125-2

Key words

Navigation