Chromosome Research

, Volume 15, Issue 3, pp 257–268 | Cite as

Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting

  • Lei Ao
  • Xiuguang Mao
  • Wenhui Nie
  • Xiaoming Gu
  • Qing Feng
  • Jinhuan Wang
  • Weiting Su
  • Yingxiang Wang
  • Marianne Volleth
  • Fengtang YangEmail author


Bats are a unique but enigmatic group of mammals and have a world-wide distribution. The phylogenetic relationships of extant bats are far from being resolved. Here, we investigated the karyotypic relationships of representative species from four families of the order Chiroptera by comparative chromosome painting and banding. A complete set of painting probes derived from flow-sorted chromosomes of Myotis myotis (family Vespertilionidae) were hybridized onto metaphases of Cynopterus sphinx (2n = 34, family Pteropodidae), Rhinolophus sinicus (2n = 36, family Rhinolophidae) and Aselliscus stoliczkanus (2n = 30, family Hipposideridae) and delimited 27, 30 and 25 conserved chromosomal segments in the three genomes, respectively. The results substantiate that Robertsonian translocation is the main mode of chromosome evolution in the order Chiroptera, with extensive conservation of whole chromosomal arms. The use of M. myotis (2n = 44) probes has enabled the integration of C. sphinx, R. sinicus and A. stoliczkanus chromosomes into the previously established comparative maps between human and Eonycteris spelaea (2n = 36), Rhinolophus mehelyi (2n = 58), Hipposideros larvatus (2n = 32), and M. myotis. Our results provide the first cytogenetic signature rearrangement that supports the grouping of Pteropodidae and Rhinolophoidea in a common clade (i.e. Pteropodiformes or Yinpterochiroptera) and thus improve our understanding on the karyotypic relationships and genome phylogeny of these bat species.

Key words

bats Chiroptera chromosome painting karyotype evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson K (1905) On some bats of the genus Rhinolophus, with remarks on their mutual affinities, and descriptions of twenty-six new forms. Proc Zool Soc London 2: 75–145.Google Scholar
  2. Ao L, Gu X, Feng Q et al. (2006) Karyotypic relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Cytogenet Genome Res 115: 145–153.PubMedCrossRefGoogle Scholar
  3. Bickham JW (1979) Banded karyotypes of 11 species of American bats (genus Myotis). Cytologia 44: 789–797.PubMedGoogle Scholar
  4. Bogdanowicz W, Owen RD (1998) In the Minotaur’s Labyrinth: phylogeny of the bat family Hipposideridae. In: Kunz TH, Racey PA, eds., Bat Biology and Conservation. Washington: Smithsonian Institution Press, pp. 27–42.Google Scholar
  5. Csorba G, Ujhelyi P, Thomas N (2003) Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Shropshire: Alana Books.Google Scholar
  6. Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22: 1869–1886.PubMedCrossRefGoogle Scholar
  7. Ellerman JR, Morrison-Scott TCS (1966) Checklist of Palaearctic and Indian Mammals. London: British Museum of Natural History.Google Scholar
  8. Frönicke L (2005) Origins of primate chromosomes – as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences. Cytogenet Genome Res 108: 122–138.CrossRefGoogle Scholar
  9. Gray JE (1821) On the natural arrangement of vertebrate animals. Lond Med Reposit 15: 296–310.Google Scholar
  10. Hand SJ, Kirsch JAW (1998) A southern origin for the Hipposideridae (Microchiroptera)? Evidence from the Australian fossil record. In: Kunz TH, Racey PA, eds., Bat Biology and Conservation. Washington: Smithsonian Inst. Press, pp. 72–90.Google Scholar
  11. Harada M, Yenbutra S, Yosida TH, Takada S (1985) Cytogenetical study of Rhinolophus bats (Chiroptera, Mammalia) from Thailand. Proc Jpn Acad Ser B 61: 455–458.Google Scholar
  12. Hutcheon JM, Kirsch JAW (2004) Camping in a different tree: results of molecular systematic studies of bats using DNA–DNA hybridization. J Mammal Evol 11: 17–47.CrossRefGoogle Scholar
  13. Hutcheon JM, Kirsch JAW, Pettigrew JD (1998) Base compositional biases and the bat problem. III. The question of microchiropteran monophyly. Phil Trans R Soc Lond B 353: 607–617.CrossRefGoogle Scholar
  14. Koopman KF (1984) Bats. In: Anderson S, Jones JK, eds., Orders and Families of Recent Mammals of the World. New York: Wiley, pp. 145–186.Google Scholar
  15. Koopman KF (1993) Order Chiroptera. In: Wilson DE, Reeder DM, eds., Mammal Species of the World, 2nd edn., Washington: Smithsonian Institution Press, pp. 137–241.Google Scholar
  16. Koopman KF (1994) Chiroptera: Systematics. In: Niethammer J, Schliemann H, Starck D, eds., Handbook of Zoology, vol. 8. Berlin: Walter de Gruyter Press, pp. 1–217.Google Scholar
  17. Naidu KN (1985) Studies on the cytology of bats. Thesis (PhD), University of Mysore, Mysore.Google Scholar
  18. Nie W, Liu R, Chen Y, Wang J, Yang F (1998) Mapping chromosomal homologies between humans and two largurs (Semnopithecus francoisi and S. phayrei) by chromosome painting. Chromosome Res 6: 447–453.PubMedCrossRefGoogle Scholar
  19. Nie W, Wang J, O’Brien PCM et al. (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res 10: 209–222.PubMedCrossRefGoogle Scholar
  20. Nowak RM (1999) Walker’s Mammals of the World, 6th edn., Vol. 1, Baltimore: Johns Hopkins University Press, pp. 414–470.Google Scholar
  21. Pierson ED (1986) Molecular systematics of the Microchiroptera: Higher taxon relationships and biogeography. Thesis (PhD), University of California, Berkeley.Google Scholar
  22. Pieczarka JC, Nagamachi CY, O’Brien PCM et al. (2005) Reciprocal chromosome painting between two South American bats: Carollia brevicauda and Phyllostomus hastatus (Phyllostomidae, Chiroptera). Chromosome Res 13: 339–347.PubMedCrossRefGoogle Scholar
  23. Qumsiyeh MB, Baker RJ (1988) Comparative cytogenetics and the determination of primitive karyotypes. Cytogenet Cell Genet 47: 100–103.PubMedGoogle Scholar
  24. Rickart EA, Heaney LR, Rosenfeld MJ (1989) Chromosomes of ten species of Philippine fruit bats (Chiroptera: Pteropodidae). Proc Biol Soc Wash 102: 520–531.Google Scholar
  25. Seabright M (1972) A rapid staining technique for human chromosomes. Lancet 2: 971–972.Google Scholar
  26. Simmons NB (1998) A reappraisal of interfamilial relationships of bats. In: Kunz TH, Racey PA, eds., Bat Biology and Conservation. Washington: Smithsonian Institution Press, pp. 3–26.Google Scholar
  27. Simmons NB (2005) Order Chiroptera. In: Wilson DE & Reeder DM, eds., Mammal Species of the World: a taxonomic and geographic reference, 3rd edn., vol. 1. Baltimore: Johns Hopkins University Press, pp. 312–529.Google Scholar
  28. Springer MS, Teeling EC, Madsen O, Stanhope M, de Jong WW (2001) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98: 6241–6246.PubMedCrossRefGoogle Scholar
  29. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.PubMedCrossRefGoogle Scholar
  30. Teeling EC, Madsen O, van den Bussche RA, de Jong WW, Stanhope MJ, Springer MS (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci USA 99: 1431–1436.PubMedCrossRefGoogle Scholar
  31. Teeling EC, Scally M, Kao D et al. (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188–192.PubMedCrossRefGoogle Scholar
  32. Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307: 580–584.PubMedCrossRefGoogle Scholar
  33. Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Gene Chromosome Cancer 4: 257–263.CrossRefGoogle Scholar
  34. Thomas NM (2000) Morphological and mitochondrial-DNA variation in Rhinolophus rouxii (Chiroptera). Bonn Zool Beitr 49: 1–18.Google Scholar
  35. Van Den Bussche RA, Hoofer SR (2004) Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. J Mammal 85: 321–330.CrossRefGoogle Scholar
  36. Volleth M, Heller KG (1994) Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Zool Syst Evolut-forsch 32: 11–34.CrossRefGoogle Scholar
  37. Volleth M, Klett C, Kollak A et al. (1999) ZOO-FISH analysis in a species of the order Chiroptera: Glossophaga soricina (Phyllostomidae). Chromosome Res 7: 57–64.PubMedCrossRefGoogle Scholar
  38. Volleth M, Heller KG, Pfeiffer RA, Hameister H (2002) A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiroptera families. Chromosome Res 10: 477–497.PubMedCrossRefGoogle Scholar
  39. Wang H, Liang B, Feng J, Sheng L, Zhang S (2003) Molecular phylogenetic of Hipposiderids (Chiroptera: Hipposideridae) and Rhinolophids (Chiroptera: Rhinolophidae) in China based on mitochondrial cytochrome b sequences. Folia Zool 52: 259–268.Google Scholar
  40. Wu Y, Harada M (2005) Karyology of five species of the Rhinolophus (Chiroptera: Rhinolophidae) from Guangdong, China. Acta Theriol Sin 25: 163–167.Google Scholar
  41. Wu Y, Harada M, Li Y (2004) Karyology of seven species bats from Sichuan, China. Acta Theriol Sin 24: 30–35.Google Scholar
  42. Yang F, Alkalaeva EZ, Perelman PL et al. (2003) Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc Natl Acad Sci USA 100: 1062–1066.PubMedCrossRefGoogle Scholar
  43. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103: 642–652.PubMedGoogle Scholar
  44. Yang F, Fu B, O’Brien PCM et al. (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12: 65–76.PubMedCrossRefGoogle Scholar
  45. Yang F, Graphodatsky AS, O’Brien PCM et al. (2000) Reciprocal chromosome painting illustrates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8: 393–404.PubMedCrossRefGoogle Scholar
  46. Yong HS, Dhaliwal SS, Lim BL, Teh KL, Start AN (1973) Uniformity in the karyotypes of the fruit bats Cynopterus (Mammalia: Chiroptera, Pterodidae). Malaysian J Sci 2(A): 19–23.Google Scholar
  47. Zhang W (1985) A study on the karyotypes in four species of bat (Rhinolophus). Acta Theriol Sin 5: 95–101.Google Scholar
  48. Zima J, Volleth M, Horácek I et al. (1992) Comparative karyology of rhinolophid bats. In: Horácek I, Vorhalik V, eds., Prague Studies in Mammalogy. Prague: Charles University Press, pp. 229–236.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Lei Ao
    • 1
  • Xiuguang Mao
    • 1
  • Wenhui Nie
    • 1
  • Xiaoming Gu
    • 2
  • Qing Feng
    • 1
  • Jinhuan Wang
    • 1
  • Weiting Su
    • 1
  • Yingxiang Wang
    • 3
  • Marianne Volleth
    • 3
  • Fengtang Yang
    • 4
    Email author
  1. 1.Key Laboratory of Cellular and Molecular EvolutionKunming Institute of Zoology, and Graduate School of the Chinese Academy of SciencesKunmingP.R. China
  2. 2.School of Geography and BiologyGuizhou Normal UniversityGuiyangP.R. China
  3. 3.Department of Human GeneticsOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  4. 4.Wellcome Trust Sanger InstituteCambridgeUK

Personalised recommendations