Chromosome Research

, Volume 14, Issue 8, pp 845–857 | Cite as

Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism?

  • Paul M. Datson
  • Brian G. Murray


We investigated chromosome evolution in Nemesia using fluorescent in-situ hybridization (FISH) to identify the locations of 5S and 45S (18–26S) ribosomal genes. Although there was conservation between Nemesia species in chromosome number, size and centromere position, there was large variation in both number and position of ribosomal genes in different Nemesia species (21 different arrangements of 45S and 5S rRNA genes were observed in the 29 Nemesia taxa studied). Nemesia species contained between one and three pairs of 5S arrays and between two and four pairs of 45S arrays. These were either sub-terminally or interstitially located and 45S and 5S arrays were often located on the same chromosome pair. Comparison of the positions of rDNA arrays with meiotic chromosome behaviour in interspecific hybrids of Nemesia suggests that some of the changes in the positions of rDNA have not affected the surrounding chromosome regions, indicating that rDNA has changed position by transposition. Chromosome evolution is frequently thought to occur via structural rearrangements such as inversions and translocations. We suggest that, in Nemesia, transposition of rDNA genes may be equally if not more important in chromosome evolution.

Key words

chromosome evolution 5S and 45S rDNA fluorescence in-situ hybridization Nemesia Scrophulariaceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR (2000) Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87: 1578–1583.PubMedCrossRefGoogle Scholar
  2. Andras SC, Hartman TPV, Marshall JA et al. (1999) A drop-spreading technique to produce cytoplasm-free mitotic preparations from plants with small chromosomes. Chromosome Res 7: 641–647.PubMedCrossRefGoogle Scholar
  3. Appels R, Gerlach WL, Dennis ES, Swift H, Peacock WJ (1980) Molecular chromosomal organization of DNA sequences coding for the ribosomal RNA in cereals. Chromosoma 78: 293–312.CrossRefGoogle Scholar
  4. Bolkhovskikh Z, Grif V, Matwejeva T, Zakharyeva O (1969) Chromosome Numbers of Flowering Plants. Leningrad: USSR Academy of Sciences.Google Scholar
  5. Cox AV, Bennett ST, Parokonny AS, Kenton A, Callimassia MA, Bennett MD (1993) Comparison of plant telomere locations using a PCR-generated synthetic probe. Ann Bot 72: 239–247.CrossRefGoogle Scholar
  6. Crawford DJ, Mort ME, Archibald JK (2005) Biosystematics, chromosomes and molecular data: melding the old and the new. Taxon 54: 285–289.CrossRefGoogle Scholar
  7. Datson PM, Murray BG (2003) The use of in situ hybridisation to investigate plant chromosome diversity. In Sharma AK, Sharma A, eds., Plant Genome: Biodiversity and Evolution, Vol. 1, Part A. Enfield, NH: USA Science Publishers, pp. 298–318.Google Scholar
  8. Datson PM, Murray BG, Hammett KRW (2006a) Pollination systems, hybridization barriers and meiotic chromosome behaviour in Nemesia hybrids. Euphytica 151: 173–185.Google Scholar
  9. Datson PM, Murray BG, Steiner KE (2006b) Climate and the evolution of annual/perennial life-histories in Nemesia (Scrophulariaceae) Pl Sys Evol (in press).Google Scholar
  10. Dubcovsky J, Dvorak J (1995) Ribosomal RNA multigene loci – nomads of the Triticeae genomes. Genetics 140: 1367–1377.PubMedGoogle Scholar
  11. Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci 97: 7002–7007.PubMedCrossRefGoogle Scholar
  12. Frello S, Heslop-Harrison JS (2000) Chromosomal variation in Crocus vernus Hill (Iridaceae) investigated by in situ hybridization of rDNA and a tandemly repeated sequence. Ann Bot 86: 317–322.CrossRefGoogle Scholar
  13. Goldblatt P, Manning JC (2002) Plant diversity of the Cape region of Southern Africa. Ann Mo Bot Gard 89: 281–302.CrossRefGoogle Scholar
  14. Goldblatt P, Savolainen V, Porteous O et al. (2002) Radiation in the Cape Flora and the phylogeny of peacock irises Moraea (Iridaceae) based on four plastid DNA regions. Mol Phylogenet Evol 25: 341–360.PubMedCrossRefGoogle Scholar
  15. Heitz E (1927) Chromosomen und Gestalt bei Antirrhinum und verwandten Gattungen. Planta 4: 392–410.CrossRefGoogle Scholar
  16. Henegariu O, Heerema NA, Wright LL, Bray-Ward P, Ward DC, Vance GH (2001) Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry 43: 101–109.PubMedCrossRefGoogle Scholar
  17. Hizume M (1993) Chromosome localization of 5s rRNA genes in Vicia faba and Crepis capillaris. Cytologia 58: 417–421.Google Scholar
  18. Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37: 717–725.PubMedGoogle Scholar
  19. Jones RN (1995) B chromosomes in plants. New Phytol 131: 411–434.CrossRefGoogle Scholar
  20. Jones N, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8: 417–423.PubMedCrossRefGoogle Scholar
  21. Jürgens N (1991) A new approach to the Namib region. Part 1. Phytogeographic subdivision. Vegetatio 97: 21–38.Google Scholar
  22. Jürgens N (1997) Floristic biodiversity and history of African arid regions. Biodiversity Conserv 6: 495–514.CrossRefGoogle Scholar
  23. King GA, Davies KM (1992) Identification, cDNA cloning, and analysis of mRNAs have altered expression in tips of harvested asparagus spears. Plant Physiol 100: 1661–1669.PubMedCrossRefGoogle Scholar
  24. Kurien BT, Kaufman KM, Harley JB, Scofield RH (2001) Pellet pestle homogenization of agarose gel slices at 45°C for deoxyribonucleic acid extraction. Anal Biochem 296: 162–166.PubMedCrossRefGoogle Scholar
  25. La Cour LF (1945) In Darlington CD, Janaki Ammal EK, eds., Chromosome Atlas of Cultivated Plants. London: George Allen & Unwin 315p.Google Scholar
  26. Levin DA (2002) The Role of Chromosome Change in Plant Evolution. Oxford: Oxford University Press.Google Scholar
  27. Lim KY, Matyasek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109: 245–258.PubMedCrossRefGoogle Scholar
  28. Luo R, Wang C, Zhang D (2006) Variations of 18S rDNA loci among six populations of Paeonia obovata Maxim. (Paeoniaceae) revealed by fluorescence in situ hybridization. J Integrat Plant Biol 48: 497–502.CrossRefGoogle Scholar
  29. Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94: 481–495.PubMedCrossRefGoogle Scholar
  30. Mukai Y, Endo TR, Gill BS (1991) Physical mapping of the 18S.26S ribosomal RNA multigene family in common wheat: identification of a new locus. Chromosoma 100: 71–78.CrossRefGoogle Scholar
  31. Murray BG, Friesen N, Heslop-Harrison JS (2002) Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm species. Ann Bot 89: 483–489.PubMedCrossRefGoogle Scholar
  32. Nacken WKF, Piotrowiak R, Saedler H, Sommer H (1991) The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol Gen Genet 228: 201–208.PubMedCrossRefGoogle Scholar
  33. Ornduff R (1969) Index to plant chromosome numbers for 1967. Regnum Vegetabile 59: 94.Google Scholar
  34. Propach H (1934) Cytologische Untersuchungen an Limnathes douglasii R. Br. Z für Zellforschung Mikros Anat 21: 357–375.CrossRefGoogle Scholar
  35. Ran Y, Hammett KRW, Murray BG (2001) Phylogenetic analysis and karyotype evolution in the genus Clivia (Amaryllidaceae). Ann Bot 87: 823–830.CrossRefGoogle Scholar
  36. Raskina O, Belyayev A, Nevo E (2004) Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Res 12: 153–161.PubMedCrossRefGoogle Scholar
  37. Richardson JE, Weitz FM, Fay MF et al. (2001) Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412: 181–183.PubMedCrossRefGoogle Scholar
  38. Sambrook J, Russell DW (2001) Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  39. Schubert I, Wobus U (1985) In-situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92: 143–148.CrossRefGoogle Scholar
  40. Schwarzacher T, Heslop-Harrison JS (2000) Practical In Situ Hybridization. Oxford: BIOS Scientific Publishers.Google Scholar
  41. Shi L, Zhu T, Morgante M, Rafalski JA, Keim P (1996) Soybean chromosome painting: a strategy for somatic cytogenetics. J Hered 87: 308–313.PubMedGoogle Scholar
  42. Shishido R, Sano Y, Fukai K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol Gen Genet 263: 586–591.PubMedCrossRefGoogle Scholar
  43. Staginnus C, Huettel B, Desel C, Schmidt T, Kahl G (2001) A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9: 591–605.PubMedCrossRefGoogle Scholar
  44. Steiner KE (1996) Chromosome numbers and relationships in tribe Hemimerideae (Scrophulariaceae). Syst Bot 21: 63–76.CrossRefGoogle Scholar
  45. Sýkorová E, Lim KY, Kunicka Z et al. (2003) Telomere variability in the monocotyledonous plant order Asparagales. Proc R Soc Lond Ser B 270: 1893–1904.CrossRefGoogle Scholar
  46. Sýkorová E, Fajkus J, Mezníková et al. (2006) Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am J Bot 93: 814–823.Google Scholar
  47. Tagashira N, Kondo K (2001) Chromosome phylogeny of Zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Syst Evol 227: 145–155.CrossRefGoogle Scholar
  48. Taketa S, Harrison G, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98: 1–9.CrossRefGoogle Scholar
  49. Verboom GA, Linder HP, Stock WD (2003) Phylogenetics of the grass genus Ehrharta: evidence for radiation in the summer-arid zone of the South African Cape. Evolution 57: 1008–1021.PubMedCrossRefGoogle Scholar
  50. White MJD (1973) Animal Cytology and Evolution. Cambridge: Cambridge University Press.Google Scholar
  51. Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular–cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99: 969–977.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Horticulture and Food Research Institute of New Zealand LtdAucklandNew Zealand

Personalised recommendations