Skip to main content
Log in

Synthesis of pre-rRNA and mRNA is directed to a chromatin-poor compartment in the macronucleus of the spirotrichous ciliate Stylonychia lemnae

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In contrast to the chromosomal genome organization common to most eukaryotes, DNA in the macronucleus of spirotrichous ciliates like Stylonychia lemnae is organized into small gene-sized nanochromosomes. We intended to elucidate whether a spatial organization of nucleoli similar to other eukaryotes can be found in absence of typical chromosomes. Whereas micronuclei of Stylonychia exhibit homogenously stained heterochromatin and possess no nucleoli, macronuclear chromatin is compartmentalized and contains numerous putative nucleoli. Since the identity of these spherical structures has never been unequivocally demonstrated to date, we applied immunofluorescence techniques together with confocal laser scanning microscopy to identify nucleolar bodies in the macronucleus of Stylonychia and to analyse their spatial organization. We found that multiple spherical bodies, which fulfil nucleolar function, occupy a peripheral localization in mature macronuclei. Using fibrillarin/Nop1p as a nucleolar marker, we monitored the assembly of such nucleolar bodies during macronuclear differentiation. 3D-FISH experiments revealed that rRNA genes are mostly concentrated adjacent to but not inside of fibrillarin/Nop1p-containing bodies. We further showed that transcription sites for rRNA synthesis but also for mRNA synthesis occur predominantly at surfaces of nucleolar bodies and chromatin-poor spaces bordering condensed chromatin. Our data suggest that transcription of rRNA genes in the macronucleus of Stylonychia does not rely on a classical nucleolus-type organization. We assume that vectorial synthesis and processing of rRNA and mRNA is directed to a functional interchromatin compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. Supplementary data may be found at <http://dx.doi.org/10.1007/s10577-005-1033-2>.

References

  • Ammermann D (1970) The micronucleus of the ciliate Stylonychia mytilus; its nucleic acid synthesis and its function. Exp Cell Res 61: 6–12.

    Article  CAS  PubMed  Google Scholar 

  • Ammermann D (1971) Morphology and development of the macronuclei of the ciliates Stylonychia mytilus and Euplotes aediculatus. Chromosoma 33: 209–238.

    Article  CAS  PubMed  Google Scholar 

  • Ammermann D, Steinbruck G, Berger Lv, Hennig W (1974) The development of the macronucleus in the ciliated protozoan Stylonychia mytilus. Chromosoma 45: 401–429.

    Article  CAS  PubMed  Google Scholar 

  • Boisvert FM, Hendzel MJ, Bazett-Jones DP (2000) Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148: 283–292.

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Fonseca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2: E107–112.

    Article  CAS  PubMed  Google Scholar 

  • Charret R (1969) Nucleolar DNA in Tetrahymena pyriformis: chronology of its replication. Exp Cell Res 54: 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301.

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Kupper K, Dietzel S, Fakan S (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell 96: 555–567.

    Article  CAS  PubMed  Google Scholar 

  • Engberg J, Nilsson JR, Pearlman RE, Leick V (1974) Induction of nucleolar and mitochondrial DNA replication in Tetrahymena pyriformis. Proc Natl Acad Sci USA 71: 894–898.

    CAS  PubMed  Google Scholar 

  • Gall JG (1974) Free ribosomal RNA genes in the macronucleus of Tetrahymena. Proc Natl Acad Sci USA 71: 3078–3081.

    CAS  PubMed  Google Scholar 

  • Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16: 273–300.

    Article  CAS  PubMed  Google Scholar 

  • Gall JG, Karrer KM, Yao M-C (1977) The ribosomal RNA genes in Tetrahymena. In: Ts'o POP, ed. The Molecular Biology of the Mammalian Genetic Apparatus. New York: Elsevier North-Holland Pub. Co., pp. 79–85.

    Google Scholar 

  • Hebert MD, Szymczyk PW, Shpargel KB, Matera AG (2001) Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev 15: 2720–2729.

    Article  CAS  PubMed  Google Scholar 

  • Hebert MD, Shpargel KB, Ospina JK, Tucker KE, Matera AG (2002) Coilin methylation regulates nuclear body formation. Dev Cell 3: 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Helftenbein E (1985) Nucleotide sequence of a macronuclear DNA molecule coding for alpha-tubulin from the ciliate Stylonychia lemnae. Special codon usage: TAA is not a translation termination codon. Nucleic Acids Res 13: 415–433.

    CAS  PubMed  Google Scholar 

  • Hewitt EA, Muller KM, Cannone J, Hogan DJ, Gutell R, Prescott DM (2003) Phylogenetic relationships among 28 spirotrichous ciliates documented by rDNA. Mol Phylogenet Evol 29: 258–267.

    CAS  PubMed  Google Scholar 

  • Jackson DA, Iborra FJ, Manders EM, Cook PR (1998) Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell 9: 1523–1536.

    CAS  PubMed  Google Scholar 

  • Jansen RP, Hurt EC, Kern H et al. (1991) Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. J Cell Biol 113: 715–729.

    Article  CAS  PubMed  Google Scholar 

  • Juranek S, Jönsson F, Maercker C, Lipps HJ (2000) The telomeres of replicating macronuclear DNA molecules of the ciliate Stylonychia lemnae. Protistology 1: 148–151.

    Google Scholar 

  • Kloetzel JA (1970) Compartmentalization of the developing macronuclei following conjugation in Stylonychia and Euplotes. J Cell Biol 47: 395–407.

    Article  Google Scholar 

  • Kraut H, Lipps HJ, Prescott DM (1986) The genome of hypotrichous ciliates. Int Rev Cyt 99: 1–28.

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Leger-Silvestre I, Noaillac-Depeyre J, Faubladier M, Gas N (1997) Structural and functional analysis of the nucleolus of the fission yeast Schizosaccharomyces pombe. Eur J Cell Biol 72: 13–23.

    CAS  PubMed  Google Scholar 

  • Leger-Silvestre I, Trumtel S, Noaillac-Depeyre J, Gas N (1999) Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma 108:103–113.

    CAS  PubMed  Google Scholar 

  • Lipps HJ, Steinbruck G (1978) Free genes for rRNAs in the macronuclear genome of the ciliate Stylonychia mytilus. Chromosoma 69: 21–26.

    Article  CAS  PubMed  Google Scholar 

  • Macgregor HC (1972) The nucleolus and its genes in amphibian oogenesis. Biol Rev Camb Philos Soc 47: 177–210.

    CAS  PubMed  Google Scholar 

  • Maercker C, Harjes P, Neben M, Niemann H, Sianidis G, Lipps HJ (1997) The formation of new nucleoli during macronuclear development of the hypotrichous ciliate Stylonychia lemnae visualized by in situ hybridization. Chromosome Res 5:333–335.

    Article  CAS  PubMed  Google Scholar 

  • Mais C, Scheer U (2001) Molecular architecture of the amplified nucleoli of Xenopus oocytes. J Cell Sci 114: 709–718.

    CAS  PubMed  Google Scholar 

  • Meyer GF, Lipps HJ (1981) The formation of polytene chromosomes during macronuclear development of the hypotrichous ciliate Stylonychia mytilus. Chromosoma 82: 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Murti KG (1973) Electron-microscopic observations on the macronuclear development of Stylonychia mytilus and Tetrahymena pyriformis (Ciliophora-Protozoa). J Cell Sci 13: 479–509.

    CAS  PubMed  Google Scholar 

  • Murti KG, Prescott DM (2002) Topological organization of DNA molecules in the macronucleus of hypotrichous ciliated protozoa. Chromosome Res 10: 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Olins DE, Olins AL (1994) The replication band of ciliated protozoa. Int Rev Cyt 153: 137–170.

    CAS  Google Scholar 

  • Olins AL, Olins DE, Franke WW, Lipps HJ, Prescott DM (1981) Stereo-electron microscopy of nuclear structure and replication in ciliated protozoa (Hypotricha). Eur J Cell Biol 25:120–130.

    CAS  PubMed  Google Scholar 

  • Perkowska E, Macgregor HC, Birnstiel ML (1968) Gene amplification in the oocyte nucleus of mutant and wild-type Xenopus laevis. Nature 217: 649–650.

    CAS  PubMed  Google Scholar 

  • Pluta AF, Spear BB (1981) Localization of genes for ribosomal RNA in the nuclei of Oxytricha fallax. Exp Cell Res 135:387–392.

    Article  CAS  PubMed  Google Scholar 

  • Politz JC, Tuft RA, Pederson T, Singer RH (1999) Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr Biol 9: 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Postberg J, Juranek SA, Feiler S, Kortwig H, Jönsson F, Lipps HJ (2001) Association of the telomere-telomere binding protein-complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication. J Cell Sci 114: 1861–1866.

    CAS  PubMed  Google Scholar 

  • Postberg J, Alexandrova O, Cremer T, Lipps HJ (2005) Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription. J Cell Sci 118:3973–3983.

    Article  CAS  PubMed  Google Scholar 

  • Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58: 233–267.

    CAS  PubMed  Google Scholar 

  • Prescott DM, Murti KG, Bostock CJ (1973) Genetic apparatus of Stylonychia sp. Nature 242: 576, 597–600.

    Article  CAS  PubMed  Google Scholar 

  • Scheer U, Hock R (1999) Structure and function of the nucleolus. Curr Opin Cell Biol 11: 385–390.

    Article  CAS  PubMed  Google Scholar 

  • Schimmang T, Tollervey D, Kern H, Frank R, Hurt EC (1989) A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J 8: 4015–4024.

    CAS  PubMed  Google Scholar 

  • Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11: 93–121.

    Article  CAS  PubMed  Google Scholar 

  • Sleeman JE, Lamond AI (1999) Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 9: 1065–1074.

    Article  CAS  PubMed  Google Scholar 

  • Spector DL (1993) Macromolecular domains within the cell nucleus. Annu Rev Cell Biol 9: 265–315.

    Article  CAS  PubMed  Google Scholar 

  • Spector DL (2001) Nuclear domains. J Cell Sci 114: 2891–2893.

    CAS  PubMed  Google Scholar 

  • Swanton MT, McCarroll RM, Spear BB (1982) The organization of macronuclear rDNA molecules of four hypotrichous ciliated protozoans. Chromosoma 85: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Thiebaud CH (1979a) The intra-nucleolar localization of amplified rDNA in Xenopus laevis oocytes. Chromosoma 73:29–36.

    CAS  PubMed  Google Scholar 

  • Thiebaud CH (1979b) Quantitative determination of amplified rDNA and its distribution during oogenesis in Xenopus laevis. Chromosoma 73: 37–44.

    CAS  PubMed  Google Scholar 

  • Verschure PJ, van Der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol 147: 13–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the National Science Foundation (grant no: EIA-0121422). A special acknowledgement is dedicated to Thomas Cremer, Ludwig Maximilians University Munich, Department Biology II, Anthropology and Human Genetics. If he had not generously provided his microscopy facility, this work would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Postberg.

Supplementary Data 1

DO00001033_ESM.avi

A 3D reconstruction illustrates that delimitated chromatin spots occasionally observed in the interior of nucleolar bodies in single optical sections are built up by chromatin invaginations into such a body, showing that they in fact are localized beyond the interior of these spherical structures. The surface was rendered using To-Pro-3 counterstaining. AVI movie file (2.9 Mb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postberg, J., Alexandrova, O. & Lipps, H.J. Synthesis of pre-rRNA and mRNA is directed to a chromatin-poor compartment in the macronucleus of the spirotrichous ciliate Stylonychia lemnae. Chromosome Res 14, 161–175 (2006). https://doi.org/10.1007/s10577-006-1033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1033-x

Key words

Navigation