Skip to main content
Log in

Drosophila telomeres: the non-telomerase alternative

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In most eukaryotes, telomeres are composed of simple repetitive sequences renewable by telomerase. By contrast, Drosophila telomeres comprise arrays of non-LTR retrotransposons HeT-A, TART, and TAHRE belonging to three different families. However, closer inspection reveals that the two quite different telomere systems share quite a few components and regulatory circuits. Here we present the current knowledge on Drosophila telomeres and discuss the possible mechanisms of telomere length control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad JP, de Pablos B, Osoegawa K, de Jong PJ, Martin-Gallardo A, Villasante A (2004a) Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at the telomeres. Mol Biol Evol 21: 1613–1619.

    Google Scholar 

  • Abad JP, de Pablos B, Osoegawa K, de Jong PJ, Martin-Gallardo A, Villasante A (2004b) TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21: 1620–1624.

    Article  PubMed  Google Scholar 

  • Alexander MK, Zakian VA (2003) Rap1p telomere association is not required for mitotic stability of a C3TA2 telomere in yeast. EMBO J 22: 1688–1696.

    Article  PubMed  Google Scholar 

  • Belenkaya T, Soldatov A, Nabirochkina E, Birjukova I, Georgieva S, Georgiev P (1998) The allele of the polyhomeotic gene induced by P element insertion encodes a new chimeric protein, that negatively regulates the expression of P-induced alleles in the yellow locus of Drosophila melanogaster. Genetics 150: 687–697.

    PubMed  Google Scholar 

  • Bertuch AA, Lundblad V (2003) Which end: dissecting Ku’s function at telomeres and double-strand breaks. Genes Dev 17: 2347–2350.

    Article  PubMed  Google Scholar 

  • Bi X, Wei SC, Rong YS (2004) Telomere protection without a telomerase, the role of ATM and Mre11 in Drosophila telomere maintenance. Curr Biol 14: 1348–1353.

    Article  PubMed  Google Scholar 

  • Biessmann H, Mason JM (1988) Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J 7: 1081–1086.

    PubMed  Google Scholar 

  • Biessmann H, Mason JM (2003) Telomerase-independent mechanisms of telomere elongation. Cell Mol Life Sci 60: 2325–2333.

    Article  PubMed  Google Scholar 

  • Biessmann H, Mason JM, Ferry K et al. (1990) Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila. Cell 61: 663–673.

    Article  PubMed  Google Scholar 

  • Biessmann H, Champion LE, O’Hare K, Ikenaga K, Kasravi B, Mason JM (1992) Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J 11: 4459–4469.

    PubMed  Google Scholar 

  • Blackburn EH (2001) Switching and signaling at the telomere. Cell 106: 661–673.

    Article  PubMed  Google Scholar 

  • Boivin A, Gally C, Netter S, Anxolabehere D, Ronsseray S (2003) Telomeric associated sequences of Drosophila recruit Polycomb-group proteins in vivo and can induce pairing-sensitive repression. Genetics 164: 195–208.

    PubMed  Google Scholar 

  • Brevet V, Berthiau A-S, Civitelli L et al. (2003) The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO J 22: 1697–1706.

    PubMed  Google Scholar 

  • Casacuberta E, Pardue ML (2003a) HeT-A elements in Drosophila virilis: retrotransposon telomeres are conserved across the Drosophila genus. Proc Natl Acad Sci USA 100: 14091–14096.

    PubMed  Google Scholar 

  • Casacuberta E, Pardue ML (2003b) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci USA 100: 3363–3368.

    Article  PubMed  Google Scholar 

  • Cech TR (2004) Beginning to understand the end of the chromosome. Cell 116: 273–279.

    Article  PubMed  Google Scholar 

  • Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti M (2003) The Drosophila HOAP protein is required for telomere capping. Nat Cell Biol 5: 82–84.

    Google Scholar 

  • Ciapponi L, Cenci G, Ducau J et al. (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr Biol 14: 1360–1366.

    Article  PubMed  Google Scholar 

  • Danilevskaya ON, Traverse KL, Hogan NC, DeBaryshe PG, Pardue M-L (1999) The two Drosophilatelomeric transposable elements have very different patterns of transcription. Mol Cell Biol 19: 873–881.

    PubMed  Google Scholar 

  • de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5: 323–329.

    Article  PubMed  Google Scholar 

  • Eickbush TH (1997) Telomerase and retrotransposons: which came first? Science 277: 911–912.

    Article  PubMed  Google Scholar 

  • Eissenberg JC, Elgin SCR (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10: 204–210.

    Article  PubMed  Google Scholar 

  • Fanti L, Giovinazzo G, Berlogo M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2: 527–538.

    Article  PubMed  Google Scholar 

  • Garcia-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36: 94–99.

    PubMed  Google Scholar 

  • George JA, Pardue M-L (2003) The promoter of the heterochromatin Drosophila telomeric retrotransposon, HeT-A, is active when moved into euchromatic locations. Genetics 163: 625–635.

    PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.

    Article  PubMed  Google Scholar 

  • Gryderman DE, Morris EJ, Biessmann H, Elgin SCR, Wallrath LL (1999) Silencing at Drosophila telomeres: nuclear organization and chromatin play critical roles. EMBO J 18: 3724–3735.

    Article  PubMed  Google Scholar 

  • Kahn T, Savitsky M, Georgiev P (2000) Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol 20: 7634–7642.

    Article  PubMed  Google Scholar 

  • Karpen GH, Spradling AC (1992) Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single-P element insertional mutagenesis. Genetics 132: 737–753.

    PubMed  Google Scholar 

  • Kass-Eisler A, Greider CW (2000) Recombination in telomere-length maintenance. Trends Biochem Sci 25: 200–204.

    Article  PubMed  Google Scholar 

  • Kellum R (2003) HP1 complexes and heterochromatin assembly. Curr Top Microbiol Immunol 274: 53–77.

    PubMed  Google Scholar 

  • Kurenova E, Champion L, Biessmann H, Mason JM (1998) Directional gene silencing induced by a complex subtelomeric satellite from Drosophila. Chromosoma 107: 311–320.

    Article  PubMed  Google Scholar 

  • Levis RW (1989) Viable deletions of a telomere from a Drosophila chromosome. Cell 58: 791–801.

    Article  PubMed  Google Scholar 

  • Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM (1993) Transposons in place of telomere repeats at a Drosophila telomere. Cell 75: 1083–1093.

    Article  PubMed  Google Scholar 

  • Levy DL, Blackburn EH (2004) Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 24: 10857–10867.

    Article  PubMed  Google Scholar 

  • Lundblad V (2002) Telomere maintenance without telomerase. Oncogene 21: 522–531.

    Article  PubMed  Google Scholar 

  • Mason JM, Konev AY, Golubovsky MD, Biessmann H (2003a) Cis- and trans-acting influences on telomeric position effect in Drosophila melanogaster detected with a subterminal transgene. Genetics 163: 917–930.

    PubMed  Google Scholar 

  • Mason JM, Konev AY, Biessmann H (2003b) Telomeric position effect in Drosophila melanogaster reflects a telomere length control mechanism. Genetica 117: 319–325.

    Article  PubMed  Google Scholar 

  • Mason JM, Ransom J, Konev AY (2004) A deficiency screen for dominant suppressors of telomeric silencing in Drosophila. Genetics 168: 1353–1370.

    Article  PubMed  Google Scholar 

  • Melnikova L, Georgiev P (2002) Enhancer of terminal gene conversion, a new mutation in Drosophila melanogaster that induces telomere elongation by gene conversion. Genetics 162: 1301–1312.

    PubMed  Google Scholar 

  • Melnikova L, Biessmann H, Georgiev P (2004) The vicinity of a broken chromosome end affects P element mobilization in Drosophila melanogaster. Mol Genet Genomics 272: 512–518.

    Article  PubMed  Google Scholar 

  • Melnikova L, Biessmann H, Georgiev P (2005) The Ku protein complex is involved in length regulation of Drosophila telomeres. Genetics 170: 221–235.

    Google Scholar 

  • Mikhailovsky S, Belenkaya T, Georgiev P (1999) Broken chromosome ends can be elongated by conversion in Drosophila melanogaster. Chromosoma 108: 114–120.

    Article  PubMed  Google Scholar 

  • Morin GB, Cech TR (1986) The telomeres of the linear mitochondrial DNA of Tetrahymena thermophila consist of 53 bp tandem repeats. Cell 46: 873–883.

    Article  PubMed  Google Scholar 

  • Oikemus SR, McGinnes N, Queiroz-Machado J et al. (2004) Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 18: 1850–1861.

    Article  PubMed  Google Scholar 

  • Pal-Bhadra M, Leibovitch BA, Gandhi SG et al. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303: 669–672.

    Article  PubMed  Google Scholar 

  • Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37: 485–511.

    Article  PubMed  Google Scholar 

  • Pastwa E, Blasiak J (2003) Non-homologous end joining. Acta Biochim Pol 50: 891–908.

    PubMed  Google Scholar 

  • Perini B, Piacentini L, Fanti L et al. (2004) HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell 15: 467–476.

    Article  PubMed  Google Scholar 

  • Purdy A, Su TT (2004) Telomeres: not all breaks are equal. Curr Biol 14: 613–614.

    Article  Google Scholar 

  • Rashkova S, Karam SE, Kellum R, Pardue M-L (2002a) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Sci 159: 397–402.

    Google Scholar 

  • Rashkova LN, Karam SE, Pardue M-L (2002b) Element-specific localization Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci USA 99: 3621–3626.

    Article  PubMed  Google Scholar 

  • Rashkova S, Athanasiadis A, Pardue M-L (2003) Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons. J Virol 77: 6376–6384.

    Article  PubMed  Google Scholar 

  • Rosen M, Edstrom JE (2000) DNA structures common for chironomid telomeres terminating with complex repeats. Insect Mol Biol 9: 314–347.

    Article  Google Scholar 

  • Roth CW, Kobeski F, Walter MF, Biessmann H (1997) Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 17: 5176–5183.

    PubMed  Google Scholar 

  • Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72: 481–516.

    Article  PubMed  Google Scholar 

  • Savitsky M, Kravchuk O, Melnikova L, Georgiev P (2002) Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster. Mol Cell Biol 22: 3204–3218.

    Article  PubMed  Google Scholar 

  • Shareef MM, King C, Damaj M, Badagu R, Huang DW, Kellum R (2001) Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell 12: 1671–1685.

    PubMed  Google Scholar 

  • Sharma GG, Hwang KK, Pandita RK et al. (2003) Human heterochromatin protein 1 isoforms HP1(Has) and HP1(Hsb) interfere with hTERT–telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol Cell Biol 23: 8363–8376.

    Article  PubMed  Google Scholar 

  • Sheen FM, Levis RW (1994) Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci USA 91: 12510–12514.

    PubMed  Google Scholar 

  • Silva E, Tiong S, Pedersen M et al. (2004) ATM is required for telomere maintenance and chromosome stability during Drosophila development. Curr Biol 14: 1341–1347.

    Article  PubMed  Google Scholar 

  • Siriaco GM, Cenci G, Haoudi A et al. (2002) Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics 160: 235–245.

    PubMed  Google Scholar 

  • Smith CD, Smith DL, DeRisi JL, Blackburn EH (2003) Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol Biol Cell 14: 556–570.

    Article  PubMed  Google Scholar 

  • Smogorzewska A, de Lange T (2004) Regulation of telomeres by telomeric proteins. Annu Rev Biochem 73: 177–208.

    Article  PubMed  Google Scholar 

  • Song K, Jung Y, Jung D, Lee I (2001) Human Ku70 interacts with heterochromatin protein 1 alpha. J Biol Chem 276: 8321–8327.

    Article  PubMed  Google Scholar 

  • Song YH, Mirey G, Betson M, Haber DA, Settleman J (2004) The Drosophila ATM ortholog, dATM, mediates the response to ionizing radiation and spontaneous DNA damage during development. Curr Biol 14: 1354–1359.

    Article  PubMed  Google Scholar 

  • Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117: 323–335.

    PubMed  Google Scholar 

  • Vagin VV, Klenov MS, Kalmykova AI, Stolyarenko AD, Kotelnikov RN, Gvozdev VA (2004) The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol 1: 54–58.

    Google Scholar 

  • Wallrath LL, Elgin SC (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9: 1263–1277.

    PubMed  Google Scholar 

  • Walter MF, Jang C, Kasravi B et al. (1995) DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 104: 229–241.

    PubMed  Google Scholar 

  • Walter MF, Bozorgnia L, Maheshwari A, Biessmann H (2001) The rate of terminal nucleotide loss from a telomere of the mosquito Anopheles gambiae. Insect Mol Biol 10: 105–110.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Georgiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnikova, L., Georgiev, P. Drosophila telomeres: the non-telomerase alternative. Chromosome Res 13, 431–441 (2005). https://doi.org/10.1007/s10577-005-0992-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-0992-7

Key words

Navigation