Skip to main content
Log in

The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Telomeres and subtelomeres are important to the virulence of a number of pathogens, as they harbour large diverse gene families associated with the maintenance of infection. Evasion of immunity by African trypanosomes involves the differential expression of variant surface glycoproteins (VSGs), which are encoded by a family of >1500 genes and pseudogenes. This silent archive is located subtelomerically and is activated by gene conversion into specialized transcription units, which themselves are subject to silencing by allelic exclusion. Current research addresses the role of telomeres in the conversion and silencing mechanisms and in the diversification of the VSG archive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aline RF, Stuart K (1989) Trypanosoma brucei – conserved sequence organization 3′ to telomeric variant surface glycoprotein genes. Exp Parasitol 68: 57–66.

    Article  PubMed  Google Scholar 

  • Askree SH, Yehuda T, Smolikov S et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA 101: 8658–8663.

    Article  PubMed  Google Scholar 

  • Barry JD, McCulloch R (2001) Antigenic variation in trypanosomes: Enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49: 1–70.

    PubMed  Google Scholar 

  • Barry JD, Ginger ML, Burton P, McCulloch R (2003) Why are parasite contingency genes often associated with telomeres? Int J Parasitol 33: 29–45.

    Article  PubMed  Google Scholar 

  • Becker M, Aitcheson N, Byles E, Wickstead B, Louis E, Rudenko G (2004) Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast. Genome Res 14: 2319–2329.

    Article  PubMed  Google Scholar 

  • Berberof M, Vanhamme L, Tebabi P et al. (1995) The 3′-terminal region of the messenger RNAs for VSG and procyclin can confer stage specificity to gene expression in Trypanosoma brucei. EMBO J 14: 2925–2934.

    PubMed  Google Scholar 

  • Bernards A, Michels PAM, Lincke CR, Borst P (1983) Growth of chromosome ends in multiplying trypanosomes. Nature 303: 592–597.

    PubMed  Google Scholar 

  • Berriman M, Hall N, Sheader K et al. (2002) The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Mol Biochem Parasitol 122: 131–140.

    Article  PubMed  Google Scholar 

  • Blackburn EH, Challoner PB (1984) Identification of a telomeric DNA sequence in Trypanosoma brucei. Cell 36: 447–457.

    Article  PubMed  Google Scholar 

  • Borst P, Chaves I (1999) Mono-allelic expression of genes in simple eukaryotes. Trends Genet 15: 95–96.

    Article  Google Scholar 

  • Bringaud F, Biteau N, Melville SE et al. (2002) A new, expressed multigene family containing a hot spot for insertion of retroelements is associated with polymorphic subtelomeric regions of Trypanosoma brucei. Eukaryot Cell 1: 137–151.

    Article  PubMed  Google Scholar 

  • Cano MI (2001) Telomere biology of trypanosomatids: more questions than answers. Trends Parasitol 17: 425–429.

    PubMed  Google Scholar 

  • Cano MIN, Dungan JM, Agabian N, Blackburn EH (1999) Telomerase in kinetoplastid parasitic protozoa. Proc Natl Acad Sci USA 96: 3616–3621.

    Article  PubMed  Google Scholar 

  • Chaves I, Rudenko G, Dirks-Mulder A, Cross M, Borst P (1999) Control of variant surface glycoprotein gene expression sites in Trypanosoma brucei. EMBO J 18: 4846–4855.

    Article  PubMed  Google Scholar 

  • Chiurillo MA, Cano I, Dasilveira JF, Ramirez JL (1999) Organization of telomeric and sub-telomeric regions of chromosomes from the protozoan parasite Trypanosoma cruzi. Mol Biochem Parasitol 100: 173–183.

    Article  PubMed  Google Scholar 

  • Chiurillo MA, Beck AE, Devos T, Myler PJ, Stuart K, Ramirez JL (2000) Cloning and characterization of Leishmania donovani telomeres. Exp Parasitol 94: 248–258.

    Article  PubMed  Google Scholar 

  • Conway C, McCulloch R, Ginger ML, Robinson NP, Browitt A, Barry JD (2002a) Ku is important for telomere maintenance, but not for differential expression of telomeric VSG genes, in African trypanosomes. J Biol Chem 277: 21269–21277.

    Article  PubMed  Google Scholar 

  • Conway C, Proudfoot C, Burton P, Barry JD, McCulloch R (2002b) Two pathways of homologous recombination in Trypanosoma brucei. Mol Microbiol 45: 1687–1700.

    Article  PubMed  Google Scholar 

  • De Las Penas A, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17: 2245–2258.

    Article  PubMed  Google Scholar 

  • DiPaolo C, Kieft R, Cross M, Sabatini R (2005) Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein. Mol Cell 17: 441–451.

    Article  PubMed  Google Scholar 

  • Duraisingh MT, Voss TS, Marty AJ et al. (2005) Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell 121: 13–24.

    Article  PubMed  Google Scholar 

  • Eid JE, Sollner-Webb B (1997) ST-2, a telomere and subtelomere duplex and g-strand binding protein activity in Trypanosoma brucei. J Biol Chem 272: 14927–14936.

    Article  PubMed  Google Scholar 

  • Freitas-Junior LH, Porto RM, Pirrit LA, Schenkman S, Scherf A (1999) Identification of the telomere in Trypanosoma cruzi reveals highly heterogeneous telomere lengths in different parasite strains. Nucleic Acids Res 27: 2451–2456.

    PubMed  Google Scholar 

  • Freitas-Junior LH, Hernandez-Rivas R, Ralph SA et al. (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121: 25–36.

    Article  PubMed  Google Scholar 

  • Fu GL, Barker DC (1998) Characterisation of Leishmania telomeres reveals unusual telomeric repeats and conserved telomere-associated sequence. Nucleic Acids Res 26: 2161–2167.

    Article  PubMed  Google Scholar 

  • Garcia-Salcedo JA, Gijon P, Nolan DP, Tebabi P, Pays E (2003) A chromosomal SIR2 homologue with both histone NAD-dependent ADP-ribosyltransferase and deacetylase activities is involved in DNA repair in Trypanosoma brucei. EMBO J 22: 5851–5862.

    Article  PubMed  Google Scholar 

  • Ghedin E, Bringaud F, Peterson J et al. (2004) Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol 134: 183–191.

    Article  PubMed  Google Scholar 

  • Graham SV, Terry S, Barry JD (1999) A structural and transcription pattern for variant surface glycoprotein gene expression sites used in metacyclic stage Trypanosoma brucei. Mol Biochem Parasitol 103: 141–154.

    Article  PubMed  Google Scholar 

  • Greider CW (1999) Telomeres do d-loop-t-loop. Cell 97: 419–422.

    Article  PubMed  Google Scholar 

  • Hall N, Berriman M, Lennard NJ et al. (2003) The DNA sequence of chromosome I of an African trypanosome: gene content, chromosome organisation, recombination and polymorphism. Nucleic Acids Res 31: 4864–4873.

    Article  PubMed  Google Scholar 

  • Hertz-Fowler C, Peacock CS, Wood V et al. (2004) GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res 32: D339–D343.

    Article  PubMed  Google Scholar 

  • Horn D (2004) The molecular control of antigenic variation in Trypanosoma brucei. Curr Mol Med 4: 563–576.

    Article  PubMed  Google Scholar 

  • Horn D, Cross GAM (1997) Position-dependent and promoter-specific regulation of gene expression in Trypanosoma brucei. EMBO J 16: 7422–7431.

    Article  PubMed  Google Scholar 

  • Horn D, Spence C, Ingram AK (2000) Telomere maintenance and length regulation in Trypanosoma brucei. EMBO J 19: 2332–2339.

    Article  PubMed  Google Scholar 

  • Janzen CJ, Lander F, Dreesen O, Cross GA (2004) Telomere length regulation and transcriptional silencing in KU80-deficient Trypanosoma brucei. Nucleic Acids Res 32: 6575–6584.

    Article  PubMed  Google Scholar 

  • Kamper SM, Barbet AF (1992) Surface epitope variation via mosaic gene formation is potential key to long-term survival of Trypanosoma brucei. Mol Biochem Parasitol 53: 33–44.

    Article  PubMed  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303: 1626–1632.

    Article  PubMed  Google Scholar 

  • Lebrun E, Revardel E, Boscheron C, Li R, Gilson E, Fourel G (2001) Protosilencers in Saccharomyces cerevisiae subtelomeric regions. Genetics 158: 167–176.

    PubMed  Google Scholar 

  • Lowell JE, Cross GA (2004) A variant histone H3 is enriched at telomeres in Trypanosoma brucei. J Cell Sci 117: 5937–5947.

    Article  PubMed  Google Scholar 

  • Majumder HK, Boothroyd JC, Weber H (1981) Homologous 3′-terminal regions of mRNAs for surface antigens of different antigenic variants of Trypanosoma brucei. Nucleic Acids Res 9: 4745–4753.

    PubMed  Google Scholar 

  • Matthews KR, Shiels PG, Graham SV, Cowan C, Barry JD (1990) Duplicative activation mechanisms of two trypanosome telomeric VSG genes with structurally simple 5′ flanks. Nucleic Acids Res 18: 7219–7227.

    PubMed  Google Scholar 

  • McCulloch R, Rudenko G, Borst P (1997) Gene conversions mediating antigenic variation in Trypanosoma brucei can occur in variant surface glycoprotein expression sites lacking 70 base-pair repeat sequences. Mol Cell Biol 17: 833–843.

    PubMed  Google Scholar 

  • Melville SE, Leech V, Navarro M, Cross GAM (2000) The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427. Mol Biochem Parasitol 111: 261–273.

    Article  PubMed  Google Scholar 

  • Munoz DP, Collins K (2004) Biochemical properties of Trypanosoma cruzi telomerase. Nucleic Acids Res 32: 5214–5222.

    Article  PubMed  Google Scholar 

  • Munoz-Jordan JL, Cross GAM (2001) Telomere shortening and cell cycle arrest in Trypanosoma brucei expressing human telomeric repeat factor TRF1. Mol Biochem Parasitol 114: 169–181.

    Article  PubMed  Google Scholar 

  • Munoz-Jordan JL, Cross GAM, de Lange T, Griffith JD (2001) T-loops at trypanosome telomeres. EMBO J 20: 579–588.

    PubMed  Google Scholar 

  • Navarro M, Gull K (2001) A pol I transcriptional body associated with VSG monoallelic expression in Trypanosoma brucei. Nature 414: 759–763.

    PubMed  Google Scholar 

  • Pays E, Laurent M, Delinte K, Van Meirvenne N, Steinert M (1983) Differential size variations between transcriptionally active and inactive telomeres of Trypanosoma brucei. Nucleic Acids Res 11: 8137–8147.

    PubMed  Google Scholar 

  • Pays E, Vanhamme L, Berberof M (1994) Genetic controls for the expression of surface antigens in African trypanosomes. Annu Rev Microbiol 48: 25–52.

    PubMed  Google Scholar 

  • Pays E, Lips S, Nolan D, Vanhamme L, Perez-Morga D (2001) The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol 114: 1–16.

    Article  PubMed  Google Scholar 

  • Pays E, Vanhamme L, Perez-Morga D (2004) Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. Curr Opin Microbiol 7: 369–374.

    PubMed  Google Scholar 

  • Perez-Morga D, Amiguet-Vercher A, Vermijlen D, Pays E (2001) Organization of telomeres during the cell and life cycles of Trypanosoma brucei. J Eukaryot Microbiol 48: 221–226.

    Article  PubMed  Google Scholar 

  • Ricchetti M, Dujon B, Fairhead C (2003) Distance from the chromosome end determines the efficiency of double strand break repair in subtelomeres of haploid yeast. J Mol Biol 328: 847–862.

    Article  PubMed  Google Scholar 

  • Robinson NP, Burman N, Melville SE, Barry JD (1999) Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol Cell Biol 19: 5839–5846.

    PubMed  Google Scholar 

  • Robinson NP, McCulloch R, Conway C, Browitt A, Barry JD (2002) Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei. J Biol Chem 277: 26185–26193.

    Article  PubMed  Google Scholar 

  • Sabatini R, Meeuwenoord N, Van Boom JH, Borst P (2002) Recognition of base J in duplex DNA by J-binding protein. J Biol Chem 277: 958–966.

    Article  PubMed  Google Scholar 

  • Shah JS, Young JR, Kimmel BE, Iams KP, Williams RO (1987) The 5′ flanking sequence of a Trypanosoma brucei variable surface glycoprotein gene. Mol Biochem Parasitol 24: 163–174.

    Article  PubMed  Google Scholar 

  • Sheader K, Berberof M, Isobe T, Borst P, Rudenko G (2003) Delineation of the regulated Variant Surface Glycoprotein gene expression site domain of Trypanosoma brucei. Mol Biochem Parasitol 128: 147–156.

    Article  PubMed  Google Scholar 

  • Smogorzewska A, de Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73: 177–208.

    Google Scholar 

  • Tan KS, Leal ST, Cross GA (2002) Trypanosoma brucei MRE11 is non-essential but influences growth, homologous recombination and DNA double-strand break repair. Mol Biochem Parasitol 125: 11–21.

    Article  PubMed  Google Scholar 

  • Thon G, Baltz T, Giroud C, Eisen H (1990) Trypanosome variable surface glycoproteins: composite genes and order of expression. Genes Dev 9: 1374–1383.

    Google Scholar 

  • Urakawa T, Eshita Y, Majiwa PAO (1997) The primary structure of Trypanosoma (Nannomonas) congolense variant surface glycoproteins. Exp Parasitol 85: 215–224.

    Article  PubMed  Google Scholar 

  • Van der Ploeg LHT, Liu AYC, Borst P (1984) Structure of the growing telomeres of trypanosomes. Cell 36: 459–468.

    Article  PubMed  Google Scholar 

  • Vanhamme L, Poelvoorde P, Pays A, Tebabi P, Xong HV, Pays E (2000) Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei. Mol Microbiol 36: 328–340.

    Article  PubMed  Google Scholar 

  • van Leeuwen F, Taylor MC, Mondragon A et al. (1998) β-D-glucosylhydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in their telomeres. Proc Natl Acad Sci USA 95: 2366–2371.

    Article  PubMed  Google Scholar 

  • Weiden M, Osheim YN, Beyer AL, Van der Ploeg LHT (1991) Chromosome structure–DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei. Mol Cell Biol 11: 3823–3834.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Barry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, D., Barry, J.D. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Res 13, 525–533 (2005). https://doi.org/10.1007/s10577-005-0991-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-0991-8

Key words

Navigation