Skip to main content
Log in

Experimental study of peat ignition upon exposure to radiant energy

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Peat ignition upon exposure to radiant energy was studied experimentally for various kinds typical of bogs of Tomsk Region (Russia) and bogs near the city of Edinburgh (UK). The exposure time and energy density required for ignition of various kinds of peat; the characteristic burning surface temperature; and the range of radiant flux in which the combustion mode changed from flaming to smoldering were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Grishin and A. S. Yakimov, “Mathematical modeling of peat fires,” Izv. Vyssh. Uchebn. Zaved., Fiz., 52, No. 2/2, 112–121 (2009).

    Google Scholar 

  2. A. M. Grishin, A. N. Golovanov, Ya. V. Sukov, and Yu. I. Preis, “Experimental study of peat ignition and combustion,” Eng.-Phys. J., 79, No. 3, 1–6 (2006).

    Google Scholar 

  3. A. M. Grishin, A. N. Golovanov, and V. V. Medvedev, “On the ignition of a layer of combustible materials by light radiation,” Combust., Expl., Shock Waves, 35, No. 6, 618–621 (1999).

    Article  Google Scholar 

  4. N. P. Kurbatskii, “On the occurrence of forest fires in the area of the Tunguska meteorite fall,” in: Problems of Meteoritics [in Russian], Nauka, Novosibirsk (1975), pp. 69–71.

    Google Scholar 

  5. A. M. Grishin, K. N. Efimov, and V. A. Perminov, “Ignition of forest tracks as a result of cosmic or technogenic catastrophes,” Combust., Expl., Shock Waves, 32, No. 2, 134–144 (1996).

    Article  Google Scholar 

  6. A. M. Grishin and V. A. Perminov, “Ignition of forest tracts by a high-altitude source of radiation,” Combust., Expl., Shock Waves, 32, No. 5, 565–571 (1996).

    Article  Google Scholar 

  7. A. M. Grishin, V. P. Zima, V. T. Kuznetsov, and I. A. Skorik, “Ignition of combustible forest materials by a radiant energy flux,” Combust., Expl., Shock Waves, 38, No. 1, 24–29 (2002).

    Article  Google Scholar 

  8. B. S. Pinaev and V. A. Shcherbakov, “Fires caused by nuclear explosions and their consequences,” Combust., Expl., Shock Waves, 32, No. 5, 572–576 (1996).

    Article  Google Scholar 

  9. Large Soviet Encyclopedia [in Russian], Vol. 26, Sov. Éncyclopediya, Moscow (1977).

  10. G. G. Lopatina, V. P. Sasorov, B. V. Spitsyn, and D. V. Fedoseev, Optical Furnaces [in Russian], Metallurgiya, Moscow (1969).

    Google Scholar 

  11. L. de Luca, L. H. Caveny, T. J. Ohlemiller, and M. Summerfield, “Radiative ignition of double-base propellants: 1. Some formulation effects,” AIAA J., 14, No. 7, 940–946 (1976).

    Article  ADS  Google Scholar 

  12. W. A. Rosser, N. Fishman, and H. Wise, “Ignition of simulated propellants based an ammonium perchlorate,” AIAA J., 4, 1615–1622 (1966).

    Article  ADS  Google Scholar 

  13. A. K. Kulkarni, M. Kumar, and K. K. Kuo, “Review of solid-propellant ignition studies,” AIAA Paper, No. 80- 1210 (1980).

  14. A. M. Grishin, A. N. Golovanov, Y. V. Sukov, and Y. I. Pres, “Experimental study of peat ignition and combustion,” Inzh.-Fiz. Zh.,, 79, No. 3, 1–6 (2006).

    Google Scholar 

  15. G. Rein, J. Garcia, A. Simeoni, V. Tihay, and L. Ferrat, “Smoldering natural fires: comparison of combustion dynamics in boreal peat and Mediterranean humus,” WIT Trans. Ecology Environ., 119, 183–192 (2008); DOI: 10.2495/FIVA080191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Loboda.

Additional information

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 6, pp. 86–92, November–December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, V.T., Loboda, E.L. Experimental study of peat ignition upon exposure to radiant energy. Combust Explos Shock Waves 46, 690–695 (2010). https://doi.org/10.1007/s10573-010-0091-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0091-8

Key words

Navigation